Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 85(6): 063101, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24985793

ABSTRACT

The advent of microfabricated ion traps for the quantum information community has allowed research groups to build traps that incorporate an unprecedented number of trapping zones. However, as device complexity has grown, the number of digital-to-analog converter (DAC) channels needed to control these devices has grown as well, with some of the largest trap assemblies now requiring nearly one hundred DAC channels. Providing electrical connections for these channels into a vacuum chamber can be bulky and difficult to scale beyond the current numbers of trap electrodes. This paper reports on the development and testing of an in-vacuum DAC system that uses only 9 vacuum feedthrough connections to control a 78-electrode microfabricated ion trap. The system is characterized by trapping single and multiple (40)Ca(+) ions. The measured axial mode stability, ion heating rates, and transport fidelities for a trapped ion are comparable to systems with external (air-side) commercial DACs.

2.
Rev Sci Instrum ; 84(4): 043112, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23635186

ABSTRACT

We present a simple cryostat purpose built for use with surface-electrode ion traps, designed around an affordable, large cooling power commercial pulse tube refrigerator. A modular vacuum enclosure with a single vacuum space facilitates interior access and enables rapid turnaround and flexibility for future modifications. Long rectangular windows provide nearly 360° of optical access in the plane of the ion trap, while a circular bottom window near the trap enables NA 0.4 light collection without the need for in-vacuum optics. We evaluate the system's mechanical and thermal characteristics and we quantify ion trapping performance by trapping (40)Ca(+), finding small stray electric fields, long ion lifetimes, and low ion heating rates.

SELECTION OF CITATIONS
SEARCH DETAIL
...