Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 52(1): 258-72, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23214942

ABSTRACT

The synthesis and properties are reported of a rare example of a Mn(12) single-molecule magnet (SMM) in truly axial symmetry (tetragonal, I4). [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(MeOH)(4)]·MeOH (3·MeOH) was synthesized by carboxylate substitution on [Mn(12)O(12)(O(2)CMe)(16)(H(2)O)(4)]·2MeCO(2)H·4H(2)O (1). The complex was found to possess an S = 10 ground state, as is typical for the Mn(12) family, and displayed both frequency-dependent out-of-phase AC susceptibility signals and hysteresis loops in single-crystal magnetization vs DC field sweeps. The loops also exhibited quantum tunneling of magnetization steps at periodic field values. Single-crystal, high-frequency electron paramagnetic resonance spectra on 3·MeOH using frequencies up to 360 GHz revealed perceptibly sharper signals than for 1. Moreover, careful studies as a function of the magnetic field orientation did not reveal any satellite peaks, as observed for 1, suggesting that the crystals of 3 are homogeneous and do not contain multiple Mn(12) environments. In the single-crystal (55)Mn NMR spectrum in zero applied field, three well-resolved peaks were observed, which yielded hyperfine and quadrupole splitting at three distinct sites. However, observation of a slight asymmetry in the Mn(4+) peak was detectable, suggesting a possible decrease in the local symmetry of the Mn(4+) site. Spin-lattice (T(1)) relaxation studies were performed on single crystals of 3·MeOH down to 400 mK in an effort to approach the quantum tunneling regime, and fitting of the data using multiple functions was employed. The present work and other recent studies continue to emphasize that the new generation of truly high-symmetry Mn(12) complexes are better models for thorough investigation of the physical properties of SMMs than their predecessors such as 1.

2.
Chem Commun (Camb) ; (25): 3717-9, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19557259

ABSTRACT

Aluminium hydride has been synthesized electrochemically, providing a synthetic route which closes a reversible cycle for regeneration of the material and bypasses expensive thermodynamic costs which have precluded AlH(3) from being considered as a H(2) storage material.

3.
Nano Lett ; 9(4): 1501-5, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19351192

ABSTRACT

A synergistic approach involving experiment and first-principles theory not only shows that carbon nanostructures can be used as catalysts for hydrogen uptake and release in complex metal hydrides such as sodium alanate, NaAlH(4), but also provides an unambiguous understanding of how the catalysts work. Here we show that the stability of NaAlH(4) originates with the charge transfer from Na to the AlH(4) moiety, resulting in an ionic bond between Na(+) and AlH(4)(-) and a covalent bond between Al and H. Interaction of NaAlH(4) with an electronegative substrate such as carbon fullerene or nanotube affects the ability of Na to donate its charge to AlH(4), consequently weakening the Al-H bond and causing hydrogen to desorb at lower temperatures as well as facilitating the absorption of H(2) to reverse the dehydrogenation reaction. In addition, based on our experimental observations and theoretical calculations it appears the curvature of the carbon nanostructure plays a role in the catalytic process. Ab initio molecular dynamics simulation further reveals the time evolution of the charge transfer process.

4.
J Am Chem Soc ; 128(21): 6975-89, 2006 May 31.
Article in English | MEDLINE | ID: mdl-16719478

ABSTRACT

Detailed studies are reported of a Mn(12) single-molecule magnet (SMM) in truly axial (tetragonal) symmetry. The complex is [Mn(12)O(12)(O(2)CCH(2)Br)(16)(H(2)O)(4)].4CH(2)Cl(2) (2.4CH(2)Cl(2) or Mn(12)-BrAc), obtained by the standard carboxylate substitution method. The complex has an S = 10 ground state, typical of the Mn(12) family, and displays frequency-dependent out-of-phase AC susceptibility signals and hysteresis in single-crystal magnetization vs applied DC field sweeps. Single-crystal high-frequency EPR spectra in frequencies up to 360 GHz exhibit narrow signals that are not overlapping multiplets, in contrast to [Mn(12)O(12)(O(2)CMe)(16)(H(2)O)(4)].2MeCO(2)H.4H(2)O (1 or Mn(12)-Ac), which also crystallizes in an axial (tetragonal) space group but which now is recognized to consist of a mixture of six hydrogen-bonded isomers in the crystal and thus gives multiple, inhomogeneously broadened EPR signals. Similarly, single-crystal (55)Mn NMR spectra on Mn(12)-BrAc display much sharper signals than a single crystal of Mn(12)-Ac, and this allows one Mn(III) signal to show an almost baseline-resolved quintet from quadrupolar splitting ((55)Mn, I = 5/2, 100%), allowing quadrupole coupling parameters (e(2)qQ) to be determined. In addition, it was found that crushing crystals of Mn(12)-BrAc into a microcrystalline powder causes severe broadening and shifts of the NMR resonances, emphasizing the superiority of single-crystal studies. The combined results establish that Mn(12)-BrAc is far superior to Mn(12)-Ac for the study of the intrinsic properties of the Mn(12) family of SMMs in axial symmetry, and for the search for new phenomena such as quantum interference effects caused by higher-order (>2nd-order) transverse terms in the spin Hamiltonian.

5.
J Am Chem Soc ; 128(9): 2931-9, 2006 Mar 08.
Article in English | MEDLINE | ID: mdl-16506772

ABSTRACT

Mn ion doping of CdSe and other semimagnetic quantum dot (QDs) alloys has been an area of active speculation for over a decade. We report evidence of Mn(II) doping of CdSe grown from a cubic single source precursor that is superparamagnetic (SPM) with a blocking temperature of 40 K following thermal annealing. Prior to thermal annealing the 4 nm Mn/CdSe (1% Mn) QDs exhibit mainly paramagnetic behavior between 300 and 2 K, with a weak antiferromagnetic exchange. Following thermal annealing of the sample, high-temperature ferromagnetic exchange is observed in the magnetization data with the onset of an SPM phase at 40 K that exhibits a coercivity of 0.1 T at 2 K. The switching-on of SPM behavior is believed to be linked to ion migration with formation of (Se-Mn-Se-Mn-Se-Mn)n centers within the nanocrystal that exhibit coupled magnetic moments. Electron paramagnetic resonance (EPR) provides evidence of two distorted T(d) Mn core sites, a clustered site (dipolar broadened), and a localized Mn site (hyperfine-split). The ratio of the EPR signature for the dipolar broadened site increases following annealing and shows a hysteretic response around the blocking temperature. These observations suggest that thermal annealing results in enhanced cluster formation explaining the onset of the SPM phase in these nanoscale materials. Evidence of SPM behavior is evident in the field-dependent non-Langevin magnetization with a tangential loss in the ac-magnetic susceptibility and the Mydosh parameter (phi = 0.16).

6.
Inorg Chem ; 44(7): 2122-4, 2005 Apr 04.
Article in English | MEDLINE | ID: mdl-15792441

ABSTRACT

The initial application is reported of single-crystal 55Mn NMR spectroscopy, and associated orientation dependence studies, to single-molecule magnets (SMMs). The studies were performed on two members of the Mn12 family of SMMs, [Mn12O12(O2CMe)16(H2O)4].2MeCO2H.4H2O (Mn12-Ac) and [Mn12O12(O2CCH2Br)16(H2O)4].4CH)Cl) (Mn12-BrAc). Single-crystal spectra give a dramatic improvement in the spectral resolution over oriented powder spectra, allowing the clear observation of quadrupolar splittings, the determination of quadrupole coupling parameters (e2qQ), and an assessment of the symmetry-lowering perturbation of the core of Mn12-Ac by hydrogen-bonding interactions with lattice solvate molecules of crystallization. The results emphasize the utility of single-crystal NMR studies to probe the cores of these magnetic molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...