Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 411(3): 591-602, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30132057

ABSTRACT

Pulsed laser ablation sampling and sequential isotope detection can lead to signal beat in the registered signal intensities. In particular, if aerosol transport systems deliver ablated aerosol with temporal duration close to that of a single mass scan, such signal beat can become significant and lead to biased intensity ratios and concentrations. Averaging signal intensities based on the least common multiple of scan duration and laser pulse period can eliminate such a systematic bias and improve the accuracy of quantitative laser ablation experiments. The method was investigated for experiments using an ablation cell that provided aerosol washout times near 200 ms and quadrupole-based ICP-MS acquisition using different dwell and settling times that were compared with and extended by numerical simulations. It was found that the systematic bias of acquired data could exceed the inherent noise of laser ablation inductively couple plasma mass spectrometry experiments and that the averaging method could successfully minimize the bias due to beating. However, simulations revealed that this was only the case for combinations of pulse frequency and scan duration in which the number of laser pulses within the averaged period was an integer multiple of the number of isotopes in the acquisition method. In element imaging applications, this averaging will necessarily increase the size of individual pixels and it depends not only on the laser beam size but also pulse repetition rate and the acquisition settings for a sequential mass spectrometer. Graphical abstract LCM averaging can prevent occurrence of a systematic bias in LA-ICPMS measurements.

2.
Sci Rep ; 6: 37597, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27883033

ABSTRACT

Highly active phases in carbon monoxide oxidation are known, however they are transient in nature. Here, we determined for the first time the structure of such a highly active phase on platinum nanoparticles in an actual reactor. Unlike generally assumed, the surface of this phase is virtually free of adsorbates and co-exists with carbon-monoxide covered and surface oxidized platinum. Understanding the relation between gas composition and catalyst structure at all times and locations within a reactor enabled the rational design of a reactor concept, which maximizes the amount of the highly active phase and minimizes the amount of platinum needed.

3.
Sci Rep ; 6: 18818, 2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26732372

ABSTRACT

Understanding the chemistry of nanoparticles is crucial in many applications. Their synthesis in a controlled manner and their characterization at the single particle level is essential to gain deeper insight into chemical mechanisms. In this work, single nanoparticle spectro-microscopy with top-down nanofabrication is demonstrated to study individual iron nanoparticles of nine different lateral dimensions from 80 nm down to 6 nm. The particles are probed simultaneously, under same conditions, during in-situ redox reaction using X-ray photoemission electron microscopy elucidating the size effect during the early stage of oxidation, yielding time-dependent evolution of iron oxides and the mechanism for the inter-conversion of oxides in nanoparticles. Fabrication of well-defined system followed by visualization and investigation of singled-out particles eliminates the ambiguities emerging from dispersed nanoparticles and reveals a significant increase in the initial rate of oxidation with decreasing size, but the reactivity per active site basis and the intrinsic chemical properties in the particles remain the same in the scale of interest. This advance of nanopatterning together with spatially-resolved single nanoparticle X-ray absorption spectroscopy will guide future discourse in understanding the impact of confinement of metal nanoparticles and pave way to solve fundamental questions in material science, chemical physics, magnetism, nanomedicine and nanocatalysis.

4.
J Phys Chem Lett ; 5(1): 80-4, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-26276184

ABSTRACT

Chemical reactions are always associated with electronic structure changes of the involved chemical species. Determining the electronic configuration of an atom allows probing its chemical state and gives understanding of the reaction pathways. However, often the reactions are too complex and too fast to be measured at in situ conditions due to slow and/or insensitive experimental techniques. A short-lived Au2O compound has been detected for the first time under in situ conditions during the temperature-programmed reduction of Au2O3. A time-resolved resonant inelastic X-ray scattering experiment (RIXS) allowed the determination of changes in the Au electronic structure, enabling a better understanding of the reaction mechanism of Au(III) reduction. On the basis of time-resolved RIXS data analysis combined with genetic algorithm methodology, we determined the electronic structure of the metastable Au2O intermediate species. The data analysis showed a notably larger value for the lattice constant of the intermediate Au as compared to the theoretical predictions. With support of DFT calculations, we found that such a structure may indeed be formed and that the expanded lattice constant is due to the termination of Au2O on the Au2O3 structure.

5.
Analyst ; 137(22): 5374-81, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23034591

ABSTRACT

Efficient catalysts are of extraordinary importance for the development of efficient chemical processes as well as applications such as energy storage. Rational development of catalysts requires a mechanistic understanding of the catalytic reaction. Since steady-state investigations are insufficient to gain mechanistic understanding, transient methods such as SSITKA and frequency response have been developed. In this paper we provide a theoretical basis for a frequency response method based on variations in the isotopic composition of the reactant. This approach is particularly useful, since it permits transient investigations under quasi-steady state conditions and because the response is linear.

6.
J Am Chem Soc ; 133(12): 4216-9, 2011 Mar 30.
Article in English | MEDLINE | ID: mdl-21384917

ABSTRACT

One-dimensional coordination polymer nanostructures are an emerging class of nanoscale materials with many potential applications. Here, we report the first case of coordination polymer nanofibers assembled using microfluidic technologies. Unlike common synthetic procedures, this approach enables parallel synthesis with an unprecedented level of control over the coordination pathway and facilitates the formation of 1D coordination polymer assemblies at the nanometer length scale. Finally, these nanostructures, which are not easily constructed with traditional methods, can be used for various applications, for example as templates to grow and organize functional inorganic nanoparticles.


Subject(s)
Microfluidic Analytical Techniques , Nanofibers/chemistry , Organometallic Compounds/chemical synthesis , Polymers/chemistry , Organometallic Compounds/chemistry , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...