Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Toxicol In Vitro ; 95: 105762, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38072180

ABSTRACT

The US Environmental Protection Agency is evaluating the ecological and toxicological effects of per- and polyfluorinated chemicals. A number of perfluorinated chemicals have been shown to impact the thyroid axis in vivo suggesting that the thyroid hormone system is a target of these chemicals. The objective of this study was to evaluate the activity of 136 perfluorinated chemicals at seven key molecular initiating events (MIE) within the thyroid axis using nine in vitro assays. The potential MIE targets investigated are Human Iodothyronine Deiodinase 1 (hDIO1), Human Iodothyronine Deiodinase 2 (hDIO2), Human Iodothyronine Deiodinase 3 (hDIO3), Xenopus Iodothyronine Deiodinase (xDIO3); Human Iodotyrosine Deiodinase (hIYD), Xenopus Iodotyrosine Deiodinase (xIYD), Human Thyroid Peroxidase (hTPO); and the serum binding proteins Human Transthyretin (hTTR) and Human Thyroxine Binding Globulin (hTBG). Of the 136 PFAS chemicals tested, 85 had sufficient activity to produce a half-maximal effect concentration (EC50) in at least one of the nine assays. In general, most of these PFAS chemicals did not have strong potency towards the seven MIEs examined, apart from transthyretin binding, for which several PFAS had potency similar to the respective model inhibitor. These data sets identify potentially active PFAS chemicals to prioritize for further testing in orthogonal in vitro assays and at higher levels of biological organization to evaluate their capacity for altering the thyroid hormone system and causing potential adverse health and ecological effects.


Subject(s)
Fluorocarbons , Prealbumin , Humans , Prealbumin/pharmacology , Thyroid Hormones/metabolism , Thyroid Hormones/pharmacology , Iodide Peroxidase , Thyroid Gland/metabolism , Fluorocarbons/toxicity
2.
Sci Total Environ ; 788: 147721, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34134358

ABSTRACT

A pilot-scale expanded target assessment of mixtures of inorganic and organic contaminants in point-of-consumption drinking water (tapwater, TW) was conducted in Puerto Rico (PR) to continue to inform TW exposures and corresponding estimations of cumulative human-health risks across the US. In August 2018, a spatial synoptic pilot assessment of than 524 organic and 37 inorganic chemicals was conducted in 14 locations (7 home; 7 commercial) across PR. A follow-up 3-day temporal assessment of TW variability was conducted in December 2018 at two of the synoptic locations (1 home, 1 commercial) and included daily pre- and post-flush samples. Concentrations of regulated and unregulated TW contaminants were used to calculate cumulative in vitro bioactivity ratios and Hazard Indices (HI) based on existing human-health benchmarks. Synoptic results confirmed that human exposures to inorganic and organic contaminant mixtures, which are rarely monitored together in drinking water at the point of consumption, occurred across PR and consisted of elevated concentrations of inorganic contaminants (e.g., lead, copper), disinfection byproducts (DBP), and to a lesser extent per/polyfluoroalkyl substances (PFAS) and phthalates. Exceedances of human-health benchmarks in every synoptic TW sample support further investigation of the potential cumulative risk to vulnerable populations in PR and emphasize the importance of continued broad characterization of drinking-water exposures at the tap with analytical capabilities that better represent the complexity of both inorganic and organic contaminant mixtures known to occur in ambient source waters. Such health-based monitoring data are essential to support public engagement in source water sustainability and treatment and to inform consumer point-of-use treatment decision making in PR and throughout the US.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Drinking Water/analysis , Environmental Monitoring , Humans , Puerto Rico , Water , Water Pollutants, Chemical/analysis
3.
Environ Int ; 152: 106487, 2021 07.
Article in English | MEDLINE | ID: mdl-33752165

ABSTRACT

BACKGROUND: Humans are primary drivers of environmental contamination worldwide, including in drinking-water resources. In the United States (US), federal and state agencies regulate and monitor public-supply drinking water while private-supply monitoring is rare; the current lack of directly comparable information on contaminant-mixture exposures and risks between private- and public-supplies undermines tapwater (TW) consumer decision-making. METHODS: We compared private- and public-supply residential point-of-use TW at Cape Cod, Massachusetts, where both supplies share the same groundwater source. TW from 10 private- and 10 public-supply homes was analyzed for 487 organic, 38 inorganic, 8 microbial indicators, and 3 in vitro bioactivities. Concentrations were compared to existing protective health-based benchmarks, and aggregated Hazard Indices (HI) of regulated and unregulated TW contaminants were calculated along with ratios of in vitro exposure-activity cutoffs. RESULTS: Seventy organic and 28 inorganic constituents were detected in TW. Median detections were comparable, but median cumulative concentrations were substantially higher in public supply due to 6 chlorine-disinfected samples characterized by disinfection byproducts and corresponding lower heterotrophic plate counts. Public-supply applicable maximum contaminant (nitrate) and treatment action (lead and copper) levels were exceeded in private-supply TW samples only. Exceedances of health-based HI screening levels of concern were common to both TW supplies. DISCUSSION: These Cape Cod results indicate comparable cumulative human-health concerns from contaminant exposures in private- and public-supply TW in a shared source-water setting. Importantly, although this study's analytical coverage exceeds that currently feasible for water purveyors or homeowners, it nevertheless is a substantial underestimation of the full breadth of contaminant mixtures documented in the environment and potentially present in drinking water. CONCLUSION: Regardless of the supply, increased public engagement in source-water protection and drinking-water treatment, including consumer point-of-use treatment, is warranted to reduce risks associated with long-term TW contaminant exposures, especially in vulnerable populations.


Subject(s)
Groundwater , Water Pollutants, Chemical , Water Purification , Environmental Monitoring , Humans , Massachusetts , United States , Water , Water Pollutants, Chemical/analysis , Water Supply
4.
Toxicol In Vitro ; 73: 105141, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33713820

ABSTRACT

Deiodinase enzymes are critical for tissue-specific and temporal control of activation or inactivation of thyroid hormones during vertebrate development, including amphibian metamorphosis. We previously screened ToxCast chemicals for inhibitory activity toward human recombinant Type 3 iodothyronine deiodinase enzyme (hDIO3) and subsequently produced Xenopus laevis recombinant dio3 enzyme (Xldio3) with the goals to identify specific chemical inhibitors of Xldio3, to evaluate cross-species sensitivity and explore whether the human assay results are predictive of the amphibian. We identified a subset of 356 chemicals screened against hDIO3 to test against Xldio3, initially at a single concentration (200 µM), and further tested 79 in concentration-response mode. Most chemicals had IC50 values lower for hDIO3 than for Xldio3 and many had steep Hill slopes (a potential indication of non-specific inhibition). However, eight of the most potent chemicals are likely specific inhibitors, with IC50 values of 14 µM or less, Hill slopes near -1 and curves not significantly different between species likely due to conservation of catalytically active amino acids. Controlling for assay conditions, human in vitro screening results can be predictive of activity in the amphibian assay. This study lays the groundwork for future studies using recombinant non-mammalian proteins to test cross-species sensitivity to chemicals. DISCLAIMER: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.


Subject(s)
Amphibian Proteins/antagonists & inhibitors , Biological Assay , Environmental Pollutants/toxicity , Enzyme Inhibitors/toxicity , Iodide Peroxidase/antagonists & inhibitors , Amphibian Proteins/genetics , Animals , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Iodide Peroxidase/genetics , Recombinant Proteins , Risk Assessment , Xenopus laevis
5.
Sci Total Environ ; 768: 144750, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33736315

ABSTRACT

Recent urban public water supply contamination events emphasize the importance of screening treated drinking water quality after distribution. In vitro bioassays, when run concurrently with analytical chemistry methods, are effective tools to evaluating the efficacy of water treatment processes and water quality. We tested 49 water samples representing the Chicago Department of Water Management service areas for estrogen, (anti)androgen, glucocorticoid receptor-activating contaminants and cytotoxicity. We present a tiered screening approach suitable to samples with anticipated low-level activity and initially tested all extracts for statistically identifiable endocrine activity; performing a secondary dilution-response analysis to determine sample EC50 and biological equivalency values (BioEq). Estrogenic activity was detected in untreated Lake Michigan intake water samples using mammalian (5/49; median: 0.21 ng E2Eq/L) and yeast cell (5/49; 1.78 ng E2Eq/L) bioassays. A highly sensitive (anti)androgenic activity bioassay was applied for the first time to water quality screening and androgenic activity was detected in untreated intake and treated pre-distribution samples (4/49; 0.93 ng DHTEq/L). No activity was identified above method detection limits in the yeast androgenic, mammalian anti-androgenic, and both glucocorticoid bioassays. Known estrogen receptor agonists were detected using HPLC/MS-MS (estrone: 0.72-1.4 ng/L; 17α-estradiol: 1.3-1.5 ng/L; 17ß-estradiol: 1.4 ng/L; equol: 8.8 ng/L), however occurrence did not correlate with estrogenic bioassay results. Many studies have applied bioassays to water quality monitoring using only relatively small samples sets often collected from surface and/or wastewater effluent. However, to realistically adapt these tools to treated water quality monitoring, water quality managers must have the capacity to screen potentially hundreds of samples in short timeframes. Therefore, we provided a tiered screening model that increased sample screening speed, without sacrificing statistical stringency, and detected estrogenic and androgenic activity only in pre-distribution Chicago area samples.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Animals , Biological Assay , Chicago , Endocrine Disruptors/analysis , Environmental Monitoring , Estrogens/analysis , Michigan , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Quality
6.
Toxicol In Vitro ; 71: 105073, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33352258

ABSTRACT

The iodide recycling enzyme, iodotyrosine deiodinase (IYD), is a largely unstudied molecular mechanism through which environmental chemicals can potentially cause thyroid disruption. This highly conserved enzyme plays an essential role in maintaining adequate levels of free iodide for thyroid hormone synthesis. Thyroid disruption following in vivo IYD inhibition has been documented in mammalian and amphibian models; however, few chemicals have been tested for IYD inhibition in either in vivo or in vitro assays. Presented here are the development and application of a screening assay to assess susceptibility of IYD to chemical inhibition. With recombinant human IYD enzyme, a 96-well plate in vitro assay was developed and then used to screen over 1800 unique substances from the U.S. EPA ToxCast screening library. Through a tiered screening approach, 194 IYD inhibitors were identified (inhibited IYD enzyme activity by 20% or greater at target concentration of 200 µM). 154 chemicals were further tested in concentration-response (0.032-200 µM) to determine IC50 and rank-order potency. This work broadens the coverage of thyroid-relevant molecular targets for chemical screening, provides the largest set of chemicals tested for IYD inhibition, and aids in prioritizing chemicals for targeted in vivo testing to evaluate thyroid-related adverse outcomes.


Subject(s)
Biological Assay/methods , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays/methods , Iodide Peroxidase/antagonists & inhibitors , Baculoviridae/genetics , Iodide Peroxidase/genetics , Recombinant Proteins
7.
Toxicol Sci ; 176(2): 297-311, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32421828

ABSTRACT

Multiple molecular initiating events exist that disrupt male sexual differentiation in utero including androgen receptor (AR) antagonism and inhibition of synthesis, and metabolism of fetal testosterone. Disruption of androgen signaling by AR antagonists in utero reduces anogenital distance (AGD) and induces malformations in F1 male rat offspring. We are developing a quantitative network of adverse outcome pathways that includes multiple molecular initiating events and key events linking anti-AR activities to permanent reproductive abnormalities. Here, our objective was to determine how accurately the EC50s for AR antagonism in vitro or ED50s for reduced tissue growth in the Hershberger assay (HA) (key events in the adverse outcome pathway) predict the ED50s for reduced AGD in male rats exposed in utero to AR antagonists. This effort included in-house data and published studies from the last 60 years on AR antagonism in vitro and in vivo effects in the HA and on AGD after in utero exposure. In total, more than 250 studies were selected and included in the analysis with data from about 60 potentially antiandrogenic chemicals. The ability to predict ED50s for key events and adverse developmental effects from the in vitro EC50s displays considerable uncertainty with R2 values for HA and AGD of < 6%. In contrast, there is considerably less uncertainty in extrapolating from the ED50s in the HA to the ED50s for AGD (R2 value of about 85%). In summary, the current results suggest that the key events measured in the HA can be extrapolated with reasonable certainty to predict the ED50s for the adverse in utero effects of antiandrogenic chemicals on male rat offspring.


Subject(s)
Androgen Receptor Antagonists , Genitalia, Male/pathology , Receptors, Androgen , Animals , Male , Rats , Reproduction , Uncertainty
8.
Sci Total Environ ; 699: 134297, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31683213

ABSTRACT

Although endocrine disrupting compounds have been detected in wastewater and surface waters worldwide using a variety of in vitro effects-based screening tools, e.g. bioassays, few have examined potential attenuation of environmental contaminants by both natural (sorption, degradation, etc.) and anthropogenic (water treatment practices) processes. This study used several bioassays and quantitative chemical analyses to assess residence-time weighted samples at six sites along a river in the northeastern United States beginning upstream from a wastewater treatment plant outfall and proceeding downstream along the stream reach to a drinking water treatment plant. Known steroidal estrogens were quantified and changes in signaling pathway molecular initiating events (activation of estrogen, androgen, glucocorticoid, peroxisome proliferator-activated, pregnane X receptor, and aryl hydrocarbon receptor signaling networks) were identified in water extracts. In initial multi-endpoint assays geographic and receptor-specific endocrine activity patterns in transcription factor signatures and nuclear receptor activation were discovered. In subsequent single endpoint receptor-specific bioassays, estrogen (16 of 18 samples; 0.01 to 28 ng estradiol equivalents [E2Eqs]/L) glucocorticoid (3 of 18 samples; 1.8 to 21 ng dexamethasone equivalents [DexEqs]/L), and androgen (2 of 18 samples; 0.95 to 2.1 ng dihydrotestosterone equivalents [DHTEqs]/L) receptor transcriptional activation occurred above respective assay method detection limits (0.04 ng E2Eqs/L, 1.2 ng DexEqs/L, and 0.77 ng DHTEqs/L) in multiple sampling events. Estrogen activity, the most often detected, correlated well with measured concentrations of known steroidal estrogens (r2 = 0.890). Overall, activity indicative of multiple types of endocrine active compounds was highest in wastewater effluent samples, while activity downstream was progressively lower, and negligible in unfinished treated drinking water. Not only was estrogenic and glucocorticoid activity confirmed in the effluent by utilizing multiple methods concurrently, but other activated signaling networks that historically received less attention (i.e. peroxisome proliferator-activated receptor) were also detected.


Subject(s)
Biological Assay , Endocrine Disruptors/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Androgens , Basic Helix-Loop-Helix Transcription Factors , Estradiol , Estrogens , Estrone , New England , Receptors, Aryl Hydrocarbon , Rivers , Wastewater/chemistry , Water Purification
9.
Environ Health Perspect ; 127(3): 37008, 2019 03.
Article in English | MEDLINE | ID: mdl-30920876

ABSTRACT

BACKGROUND: Hexafluoropropylene oxide dimer acid [(HFPO-DA), GenX] is a member of the per- and polyfluoroalkyl substances (PFAS) chemical class, and elevated levels of HFPO-DA have been detected in surface water, air, and treated drinking water in the United States and Europe. OBJECTIVES: We aimed to characterize the potential maternal and postnatal toxicities of oral HFPO-DA in rats during sexual differentiation. Given that some PFAS activate peroxisome proliferator-activated receptors (PPARs), we sought to assess whether HFPO-DA affects androgen-dependent development or interferes with estrogen, androgen, or glucocorticoid receptor activity. METHODS: Steroid receptor activity was assessed with a suite of in vitro transactivation assays, and Sprague-Dawley rats were used to assess maternal, fetal, and postnatal effects of HFPO-DA exposure. Dams were dosed daily via oral gavage during male reproductive development (gestation days 14-18). We evaluated fetal testes, maternal and fetal livers, maternal serum clinical chemistry, and reproductive development of F1 animals. RESULTS: HFPO-DA exposure resulted in negligible in vitro receptor activity and did not impact testosterone production or expression of genes key to male reproductive development in the fetal testis; however, in vivo exposure during gestation resulted in higher maternal liver weights ([Formula: see text]), lower maternal serum thyroid hormone and lipid profiles ([Formula: see text]), and up-regulated gene expression related to PPAR signaling pathways in maternal and fetal livers ([Formula: see text]). Further, the pilot postnatal study indicated lower female body weight and lower weights of male reproductive tissues in F1 animals. CONCLUSIONS: HFPO-DA exposure produced multiple effects that were similar to prior toxicity evaluations on PFAS, such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but seen as the result of higher oral doses. The mean dam serum concentration from the lowest dose group was 4-fold greater than the maximum serum concentration detected in a worker in an HFPO-DA manufacturing facility. Research is needed to examine the mechanisms and downstream events linked to the adverse effects of PFAS as are mixture-based studies evaluating multiple PFAS. https://doi.org/10.1289/EHP4372.


Subject(s)
Fluorocarbons/adverse effects , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/pathology , Sex Differentiation/drug effects , Soil Pollutants/adverse effects , Water Pollutants, Chemical/adverse effects , Animals , Female , Fetus/drug effects , Fetus/pathology , Fetus/physiopathology , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/physiopathology , Rats , Rats, Sprague-Dawley
10.
Toxicol Sci ; 168(2): 632-643, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30649549

ABSTRACT

Chemicals that disrupt androgen receptor (AR) function in utero induce a cascade of adverse effects in male rats including reduced anogenital distance, retained nipples, and reproductive tract malformations. The objective of this study was to compare the in vitro and in utero activities of two novel AR antagonists, bisphenol C (BPC) and pyrifluquinazon (PFQ). In vitro, BPC was as potent an AR antagonist as hydroxyflutamide. Furthermore, BPC inhibited fetal testis testosterone production and testis gene expression ex vivo. However, when BPC was administered at 100 and 200 mg/kg/d in utero, the reproductive tract of the male offspring was minimally affected. None of the males displayed reproductive malformations. For comparison, in utero administration of flutamide has been shown to induce malformations in 100% of males at 6 mg/kg/d. In vitro, PFQ was several orders of magnitude less potent than BPC, vinclozolin, or procymidone. However, in utero administration of 12.5, 25, 50, and 100 mg PFQ/kg/d on GD 14-18 induced antiandrogenic effects at all dosage levels and 91% of the males displayed reproductive malformation in the high dose group. Overall, BPC was ∼380-fold more potent than PFQ in vitro, whereas PFQ was far more potent than BPC in utero. Incorporating toxicokinetic and toxicodynamic data into in vitro to in vivo extrapolations would reduce the discordance between the in vitro and in utero effects of PFQ and BPC and combining in vitro results with a short-term Hershberger assay would reduce the uncertainty in predicting the in utero effects of antiandrogenic chemicals.


Subject(s)
Androgen Receptor Antagonists/toxicity , Benzhydryl Compounds/toxicity , Genitalia, Male/drug effects , Phenols/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Quinazolinones/toxicity , Receptors, Androgen/metabolism , Animals , Binding, Competitive , Dose-Response Relationship, Drug , Female , Genitalia, Male/abnormalities , Genitalia, Male/embryology , Male , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Protein Binding , Rats, Sprague-Dawley , Testosterone/metabolism
11.
Toxicol Sci ; 168(1): 252-263, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30535411

ABSTRACT

Many glucocorticoid receptor (GR) agonists have been detected in waste and surface waters domestically and around the world, but the way a mixture of these environmental compounds may elicit a total glucocorticoid activity response in water samples remains unknown. Therefore, we characterized 19 GR ligands using a CV1 cell line transcriptional activation assay applicable to water quality monitoring. Cells were treated with individual GR ligands, a fixed ratio mixture of full or partial agonists, or a nonequipotent mixture with full and partial agonists. Efficacy varied (48.09%-102.5%) and potency ranged over several orders of magnitude (1.278 × 10-10 to 3.93 × 10-8 M). Concentration addition (CA) and response addition (RA) mixtures models accurately predicted equipotent mixture responses of full agonists (r2 = 0.992 and 0.987, respectively). However, CA and RA models assume mixture compounds produce full agonist-like responses, and therefore they overestimated observed maximal efficacies for mixtures containing partial agonists. The generalized concentration addition (GCA) model mathematically permits < 100% maximal responses, and fell within the 95% confidence interval bands of mixture responses containing partial agonists. The GCA, but not CA and RA, model predictions of nonequipotent mixtures containing both full and partial agonists fell within the same statistical distribution as the observed values, reinforcing the practicality of the GCA model as the best overall model for predicting GR activation. Elucidating the mechanistic basis of GR activation by mixtures of previously detected environmental GR ligands will benefit the interpretation of environmental sample contents in future water quality monitoring studies.


Subject(s)
Biological Assay/methods , Glucocorticoids/metabolism , Models, Biological , Receptors, Glucocorticoid/agonists , Receptors, Glucocorticoid/metabolism , Corticosterone/pharmacology , Desoxycorticosterone/pharmacology , Dexamethasone/pharmacology , Dose-Response Relationship, Drug , Drug Partial Agonism , Ligands , Prednisolone/pharmacology , Transcriptional Activation
12.
Toxicol Sci ; 168(2): 430-442, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30561685

ABSTRACT

Deiodinase enzymes play an essential role in converting thyroid hormones between active and inactive forms by deiodinating the pro-hormone thyroxine (T4) to the active hormone triiodothyronine (T3) and modifying T4 and T3 to inactive forms. Chemical inhibition of deiodinase activity has been identified as an important endpoint to include in screening chemicals for thyroid hormone disruption. To address the lack of data regarding chemicals that inhibit the deiodinase enzymes, we developed robust in vitro assays that utilized human deiodinase types 1, 2, and 3 and screened over 1800 unique chemicals from the U.S. EPA's ToxCast phase 1_v2, phase 2, and e1k libraries. Initial testing at a single concentration identified 411 putative deiodinase inhibitors that produced inhibition of 20% or greater in at least 1 of the 3 deiodinase assays, including chemicals that have not previously been shown to inhibit deiodinases. Of these, 228 chemicals produced enzyme inhibition of 50% or greater; these chemicals were further tested in concentration-response to determine relative potency. Comparisons across these deiodinase assays identified 81 chemicals that produced selective inhibition, with 50% inhibition or greater of only 1 of the deiodinases. This set of 3 deiodinase inhibition assays provides a significant contribution toward expanding the limited number of in vitro assays used to identify chemicals with the potential to interfere with thyroid hormone homeostasis. In addition, these results set the groundwork for development and evaluation of structure-activity relationships for deiodinase inhibition, and inform targeted selection of chemicals for further testing to identify adverse outcomes of deiodinase inhibition.


Subject(s)
Enzyme Inhibitors/toxicity , Iodide Peroxidase/antagonists & inhibitors , Small Molecule Libraries/toxicity , Adenoviridae/enzymology , Biological Assay , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Inhibitory Concentration 50 , Iodide Peroxidase/genetics , Iodides/analysis , Transfection , Iodothyronine Deiodinase Type II
13.
Toxicol Sci ; 162(2): 570-581, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29228274

ABSTRACT

Thyroid hormone (TH) homeostasis is dependent upon coordination of multiple key events including iodide uptake, hormone synthesis, metabolism, and elimination, to maintain proper TH signaling. Deiodinase enzymes catalyze iodide release from THs to interconvert THs between active and inactive forms, and are integral to hormone metabolism. The activity of deiodinases has been identified as an important endpoint to include in the context of screening chemicals for TH disruption. To begin to address the potential for chemicals to inhibit these enzymes an adenovirus expression system was used to produce human deiodinase type 1 (DIO1) enzyme, established robust assay parameters for nonradioactive determination of iodide release by the Sandell-Kolthoff method, and employed a 96-well plate format for screening chemical libraries. An initial set of 18 chemicals was used to establish the assay, along with the known DIO1 inhibitor 6-propylthiouracil as a positive control. An additional 292 unique chemicals from the EPA's ToxCast phase 1_v2 chemical library were screened. Chemicals were initially screened at a single high concentration of 200 µM to identify potential DIO1 inhibitors. There were 50 chemicals, or 17% of the TCp1_v2 chemicals tested, that produced >20% inhibition of DIO1 activity. Eighteen of these inhibited DIO1 activity >50% and were further tested in concentration-response mode to determine IC50s. This work presents an initial effort toward identifying chemicals with potential for affecting THs via inhibition of deiodinases and sets the foundation for further testing of large chemical libraries against DIO1 and the other deiodinase enzymes involved in TH function.


Subject(s)
DNA-Binding Proteins/antagonists & inhibitors , Iodides/metabolism , Small Molecule Libraries/toxicity , Adenoviridae/genetics , Biological Assay , DNA-Binding Proteins/genetics , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Inhibitory Concentration 50 , Plasmids
14.
Environ Sci Technol ; 51(9): 4781-4791, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28401766

ABSTRACT

In vitro bioassays are sensitive, effect-based tools used to quantitatively screen for chemicals with nuclear receptor activity in environmental samples. We measured in vitro estrogen (ER), androgen (AR), and glucocorticoid receptor (GR) activity, along with a broad suite of chemical analytes, in streamwater from 35 well-characterized sites (3 reference and 32 impacted) across 24 states and Puerto Rico. ER agonism was the most frequently detected with nearly all sites (34/35) displaying activity (range, 0.054-116 ng E2Eq L-1). There was a strong linear relationship (r2 = 0.917) between in vitro ER activity and concentrations of steroidal estrogens after correcting for the in vitro potency of each compound. AR agonism was detected in 5/35 samples (range, 1.6-4.8 ng DHTEq L-1) but concentrations of androgenic compounds were largely unable to account for the in vitro activity. Similarly, GR agonism was detected in 9/35 samples (range, 6.0-43 ng DexEq L-1); however, none of the recognized GR-active compounds on the target-chemical analyte list were detected. The utility of in vitro assays in water quality monitoring was evident from both the quantitative agreement between ER activity and estrogen concentrations, as well as the detection of AR and GR activity for which there were limited or no corresponding target-chemical detections to explain the bioactivity. Incorporation of in vitro bioassays as complements to chemical analyses in standard water quality monitoring efforts would allow for more complete assessment of the chemical mixtures present in many surface waters.


Subject(s)
Glucocorticoids , Rivers , Biological Assay , Estrogens , Receptors, Estrogen/metabolism , United States , Water Pollutants, Chemical
15.
Environ Toxicol Chem ; 29(9): 2064-71, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20821664

ABSTRACT

Reproductive abnormalities in alligators exposed to contaminants in Lake Apopka, Florida, USA represent a clear example of endocrine disruption in wildlife. Several of these contaminants that are not able to bind to mammalian estrogen receptors (such as atrazine and cyanazine) have previously been reported to bind to the alligator estrogen receptor from oviductal tissue. Binding of known Lake Apopka contaminants to full length estrogen receptors alpha from human (hERalpha) and alligator (aERalpha) was assessed in a side-by-side comparison within the same assay system. Baculovirus-expressed recombinant hERalpha and aERalpha were used in a competitive binding assay. Atrazine and cyanazine were not able to bind to either receptor. p,p'-Dicofol was able to bind to aERalpha with a concentration inhibiting 50% of binding (IC50) of 4 microM, while only partially displacing 17beta-estradiol (E2) from hERalpha and yielding a projected IC50 of 45 microM. Chemicals that only partially displaced E2 from either receptor, including some dichlorodiphenyltrichloroethane (DDT) metabolites and trans-nonachlor, appeared to have higher affinity for aERalpha than hERalpha. p,p'-Dicofol-mediated transcriptional activation through aERalpha and hERalpha was assessed to further explore the preferential binding of p,p'-dicofol to aERalpha over hERalpha. p,p'-Dicofol was able to stimulate transcriptional activation in a similar manner with both receptors. However, the in vitro results obtained with p,p'-dicofol were not reflected in an in vivo mammalian model, where Kelthane (mixed o,p'- and p,p'-dicofol isomers) did not elicit estrogenic effects. In conclusion, although there was no evidence of exclusively species-specific estrogen receptor binders, some xenoestrogens, especially p,p'-dicofol, had a higher affinity for aERalpha than for hERalpha.


Subject(s)
Alligators and Crocodiles , Endocrine Disruptors/toxicity , Estrogen Receptor alpha/metabolism , Estrogens/toxicity , Water Pollutants, Chemical/toxicity , Animals , Atrazine/chemistry , Atrazine/toxicity , Endocrine Disruptors/chemistry , Environmental Monitoring , Estradiol/chemistry , Estradiol/toxicity , Estrogen Receptor alpha/chemistry , Estrogens/analysis , Estrogens/chemistry , Florida , Fresh Water/chemistry , Herbicides/chemistry , Herbicides/toxicity , Humans , Species Specificity , Triazines/chemistry , Triazines/toxicity , Water Pollutants, Chemical/chemistry
16.
Toxicol Sci ; 111(1): 179-88, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19564212

ABSTRACT

Vinclozolin and iprodione are dicarboximide fungicides that display antiandrogenic effects in the male rat, which suggests that a mixture would lead to cumulative effects on androgen-sensitive end points. Iprodione is a steroid synthesis inhibitor, but androgen receptor antagonist activity, which is displayed by vinclozolin, has not been fully evaluated. Here, we demonstrate that iprodione binds to the human androgen receptor (IC(50) = 86.0 microM), reduces androgen-dependent gene expression, and reduces androgen-sensitive tissue weights in castrated male rats (Hershberger assay). Since vinclozolin and iprodione affect common targets in the pubertal male rat, we tested the hypothesis that a mixture would have cumulative antiandrogenic effects. An iprodione dose, that does not significantly affect androgen-dependent morphological end points, was combined with vinclozolin doses (2 x 5 factorial design). Sprague-Dawley rats were dosed by gavage with vinclozolin at 0, 10, 30, 60, and 100 mg/kg/day with and without 50 mg iprodione/kg/day from postnatal day (PND) 23 to 55-57 (n = 8 per group). The age at puberty (preputial separation [PPS]), organ weights, serum hormones, and ex vivo testis steroid hormone production were measured. Vinclozolin delayed PPS, reduced androgen-sensitive organ weights, and increased serum testosterone. The addition of iprodione enhanced the vinclozolin inhibition of PPS (PND 47.5 vs.49.1; two-way ANOVA: iprodione main effect p = 0.0002). The dose response for several reproductive and nonreproductive organ weights was affected in a cumulative manner. In contrast, iprodione antagonized the vinclozolin-induced increase in serum testosterone. These results demonstrate that these fungicides interact on common targets in a tissue-specific manner when coadministered to the pubertal male rat.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Androgen Antagonists/toxicity , Fungicides, Industrial/toxicity , Hydantoins/toxicity , Oxazoles/toxicity , Sexual Maturation/drug effects , Adrenal Glands/drug effects , Adrenal Glands/growth & development , Aminoimidazole Carboxamide/toxicity , Animals , Body Weight/drug effects , Dose-Response Relationship, Drug , Drug Combinations , Genitalia, Male/drug effects , Genitalia, Male/growth & development , Hormones/blood , Liver/drug effects , Liver/growth & development , Male , Organ Size/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Androgen/biosynthesis , Receptors, Androgen/drug effects , Receptors, Androgen/genetics , Receptors, Aryl Hydrocarbon/drug effects , Transcriptional Activation/drug effects
17.
Environ Toxicol Chem ; 28(10): 2175-81, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19453209

ABSTRACT

Mammalian receptors and assay systems are generally used for in vitro screening of endocrine-disrupting chemicals with the assumption that minor differences in amino acid sequences among species do not translate into significant differences in receptor function. Objectives of the present study were to evaluate the performance of two different in vitro assay systems (a whole cell and a cell-free competitive binding assay) in assessing whether binding of chemicals differs significantly between full-length recombinant estrogen receptors from fathead minnows (fhERalpha) and those from humans (hERalpha). It was confirmed that 17beta-estradiol displays a reduction in binding to fhERalpha at an elevated temperature (37 degrees C), as has been reported with other piscine estrogen receptors. Several of the chemicals (17beta-estradiol, ethinylestradiol, alpha-zearalanol, fulvestrant, dibutyl phthalate, benzyl butyl phthalate, and cadmium chloride) displayed higher affinity for fhERalpha than for hERalpha in the whole cell assay, while only dibutyl phthalate had a higher affinity for fhERalpha than for hERalpha in the cell-free assay. Both assays were effective in identifying strong binders, weak binders, and nonbinders to the two receptors. However, the cell-free assay provided a less complicated and more efficient binding platform and is, therefore, recommended over the whole cell binding assay. In conclusion, no strong evidence showed species-specific binding among the chemicals tested.


Subject(s)
Estrogen Receptor alpha/chemistry , Animals , Binding Sites , Binding, Competitive , COS Cells , Cadmium Chloride/chemistry , Cadmium Chloride/pharmacology , Cell-Free System , Chlorocebus aethiops , Cyprinidae , Dibutyl Phthalate/chemistry , Dibutyl Phthalate/pharmacology , Estradiol/analogs & derivatives , Estradiol/chemistry , Estradiol/pharmacology , Ethinyl Estradiol/chemistry , Ethinyl Estradiol/pharmacology , Fulvestrant , Humans , Phthalic Acids/chemistry , Phthalic Acids/pharmacology , Recombinant Proteins/chemistry , Structure-Activity Relationship , Temperature , Zeranol/analogs & derivatives , Zeranol/chemistry , Zeranol/pharmacology
18.
Toxicol Lett ; 184(2): 85-9, 2009 Jan 30.
Article in English | MEDLINE | ID: mdl-19022364

ABSTRACT

In the current study, we developed a new system using full-length recombinant baculovirus-expressed estrogen receptors which allows for direct comparison of binding across species. Estrogen receptors representing five vertebrate classes were compared: human estrogen receptor alpha (hERalpha), quail estrogen receptor alpha (qERalpha), alligator estrogen receptor alpha (aERalpha), salamander estrogen receptor alpha (sERalpha), and fathead minnow estrogen receptor alpha (fhERalpha). Saturation binding analyses indicated 17beta-estradiol (E2) dissociation constants (Kd) were 0.22+/-0.02nM for hERalpha, 0.28+/-0.04nM for sERalpha, 0.44+/-0.04nM for aERalpha, 0.58+/-0.10nM for qERalpha, and 0.58+/-0.05nM for fhERalpha. Binding specificity to each of the receptors was evaluated using E2, dihydrotestosterone (DHT), corticosterone (C), and ethinylestradiol (EE). E2 and EE were strong binders in all species with IC50's ranging from 0.65nM with hERalpha to 1.01nM with sERalpha for E2 and from 0.68nM with sERalpha to 1.20nM with qERalpha for EE. DHT was a weak binder with IC50's ranging from 3.3microM with hERalpha to 39microM with fhERalpha, and C did not bind any of the receptors at concentrations up to 100microM. This system provides a convenient in vitro approach for directly comparing chemical binding to estrogen receptors across multiple species without the need to sacrifice animals.


Subject(s)
Biological Assay/methods , Estrogen Receptor alpha/metabolism , Alligators and Crocodiles , Animals , Baculoviridae/genetics , Binding, Competitive , Cloning, Molecular , Cyprinidae , Estrogen Receptor alpha/biosynthesis , Estrogen Receptor alpha/genetics , Humans , Insecta , Ligands , Quail , Species Specificity , Urodela
19.
Toxicol Sci ; 105(2): 235-59, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18281716

ABSTRACT

In 1991, a group of expert scientists at a Wingspread work session on endocrine-disrupting chemicals (EDCs) concluded that "Many compounds introduced into the environment by human activity are capable of disrupting the endocrine system of animals, including fish, wildlife, and humans. Endocrine disruption can be profound because of the crucial role hormones play in controlling development." Since that time, there have been numerous documented examples of adverse effects of EDCs in invertebrates, fish, wildlife, domestic animals, and humans. Hormonal systems can be disrupted by numerous different anthropogenic chemicals including antiandrogens, androgens, estrogens, AhR agonists, inhibitors of steroid hormone synthesis, antithyroid substances, and retinoid agonists. In addition, pathways and targets for endocrine disruption extend beyond the traditional estrogen/androgen/thyroid receptor-mediated reproductive and developmental systems. For example, scientists have expressed concern about the potential role of EDCs in increasing trends in early puberty in girls, obesity and type II diabetes in the United States and other populations. New concerns include complex endocrine alterations induced by mixtures of chemicals, an issue broadened due to the growing awareness that EDCs present in the environment include a variety of potent human and veterinary pharmaceutical products, personal care products, nutraceuticals and phytosterols. In this review we (1) address what have we learned about the effects of EDCs on fish, wildlife, and human health, (2) discuss representative animal studies on (anti)androgens, estrogens and 2,3,7,8-tetrachlorodibenzo-p-dioxin-like chemicals, and (3) evaluate regulatory proposals being considered for screening and testing these chemicals.


Subject(s)
Endocrine Disruptors/toxicity , Endocrine System/drug effects , Environmental Pollutants/toxicity , Toxicity Tests/trends , Toxicology/trends , Adult , Animals , Animals, Wild , Child , Child Development/drug effects , Dose-Response Relationship, Drug , Ecosystem , Embryonic Development/drug effects , Environmental Exposure , Fishes , Government Regulation , Guidelines as Topic , Humans , Occupational Exposure , Reproduction/drug effects , Risk Assessment , Time Factors , Toxicology/legislation & jurisprudence
20.
Environ Toxicol Chem ; 26(9): 1793-802, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17705648

ABSTRACT

Typically, in vitro hazard assessments for the identification of endocrine-disrupting compounds (EDCs), including those outlined in the Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC) Tier 1 Screening protocols, utilize mammalian receptors. Evidence, however, exists that fish sex steroid hormone receptors differ from mammalian receptors both structurally and in their binding affinities for some steroids and environmental chemicals. Most of the binding studies to date have been conducted using cytosolic preparations from various tissues. In the present study, we compare competitive binding of a set of compounds to full-length recombinant rainbow trout androgen receptor alpha (rtAR), fathead minnow androgen receptor (fhAR), and human androgen receptor (hAR), each expressed in COS cells. Saturation binding and subsequent Scatchard analysis using [3H]R1881, a high-affinity synthetic androgen, revealed an equilibrium dissociation constant (Kd) of 0.11 nM for the rtAR, 1.8 nM for the fhAR, and 0.84 nM for the hAR. Compounds, including endogenous and synthetic steroids, known mammalian antiandrogens, and environmental compounds, were tested for competitive binding to each of the three receptors. Overall, agreement existed across receptors as to binding versus nonbinding for all compounds tested in this study. Minor differences, however, were found in the relative order of binding of the compounds to the individual receptors. Studies such as these will facilitate the identification of EDCs that may differentially affect specific species and aid in the development and support of future risk assessment protocols.


Subject(s)
Cyprinidae/metabolism , Endocrine Disruptors/pharmacology , Oncorhynchus mykiss/metabolism , Receptors, Androgen/metabolism , Animals , COS Cells , Chlorocebus aethiops , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...