Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(5): 3935-3958, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38365209

ABSTRACT

As SARS-CoV-2 continues to circulate, antiviral treatments are needed to complement vaccines. The virus's main protease, 3CLPro, is an attractive drug target in part because it recognizes a unique cleavage site, which features a glutamine residue at the P1 position and is not utilized by human proteases. Herein, we report the invention of MK-7845, a novel reversible covalent 3CLPro inhibitor. While most covalent inhibitors of SARS-CoV-2 3CLPro reported to date contain an amide as a Gln mimic at P1, MK-7845 bears a difluorobutyl substituent at this position. SAR analysis and X-ray crystallographic studies indicate that this group interacts with His163, the same residue that forms a hydrogen bond with the amide substituents typically found at P1. In addition to promising in vivo efficacy and an acceptable projected human dose with unboosted pharmacokinetics, MK-7845 exhibits favorable properties for both solubility and absorption that may be attributable to the unusual difluorobutyl substituent.


Subject(s)
COVID-19 , Glutamine , Humans , Glutamine/chemistry , SARS-CoV-2 , Cysteine Endopeptidases/chemistry , Inventions , Protease Inhibitors/pharmacology , Amides , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
2.
Microbiol Spectr ; 12(4): e0358623, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38391232

ABSTRACT

Although smallpox has been eradicated, other orthopoxviruses continue to be a public health concern as exemplified by the ongoing Mpox (formerly monkeypox) global outbreak. While medical countermeasures (MCMs) previously approved by the Food and Drug Administration for the treatment of smallpox have been adopted for Mpox, previously described vulnerabilities coupled with the questionable benefit of at least one of the therapeutics during the 2022 Mpox outbreak reinforce the need for identifying and developing other MCMs against orthopoxviruses. Here, we screened a panel of Merck proprietary small molecules and identified a novel nucleoside inhibitor with potent broad-spectrum antiviral activity against multiple orthopoxviruses. Efficacy testing of a 7-day dosing regimen of the orally administered nucleoside in a murine model of severe orthopoxvirus infection yielded a dose-dependent increase in survival. Treated animals had greatly reduced lesions in the lung and nasal cavity, particularly in the 10 µg/mL dosing group. Viral levels were also markedly lower in the UMM-766-treated animals. This work demonstrates that this nucleoside analog has anti-orthopoxvirus efficacy and can protect against severe disease in a murine orthopox model.IMPORTANCEThe recent monkeypox virus pandemic demonstrates that members of the orthopoxvirus, which also includes variola virus, which causes smallpox, remain a public health issue. While currently FDA-approved treatment options exist, risks that resistant strains of orthopoxviruses may arise are a great concern. Thus, continued exploration of anti-poxvirus treatments is warranted. Here, we developed a template for a high-throughput screening assay to identify anti-poxvirus small-molecule drugs. By screening available drug libraries, we identified a compound that inhibited orthopoxvirus replication in cell culture. We then showed that this drug can protect animals against severe disease. Our findings here support the use of existing drug libraries to identify orthopoxvirus-targeting drugs that may serve as human-safe products to thwart future outbreaks.


Subject(s)
Mpox (monkeypox) , Orthopoxvirus , Smallpox , Variola virus , Animals , Mice , Humans , Nucleosides/therapeutic use , Smallpox/drug therapy , Smallpox/prevention & control , Disease Models, Animal
3.
J Med Chem ; 66(2): 1157-1171, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36624931

ABSTRACT

PDE10A is an important regulator of striatal signaling that, when inhibited, can normalize dysfunctional activity. Given the involvement of dysfunctional striatal activity with schizophrenia, PDE10A inhibition represents a potentially novel means for its treatment. With the goal of developing PDE10A inhibitors, early optimization of a fragment hit through rational design led to a series of potent pyrimidine PDE10A inhibitors that required further improvements in physicochemical properties, off-target activities, and pharmacokinetics. Herein we describe the discovery of an isomeric pyrimidine series that addresses the liabilities seen with earlier compounds and resulted in the invention of compound 18 (MK-8189), which is currently in Phase 2b clinical development for the treatment of schizophrenia.


Subject(s)
Phosphodiesterase Inhibitors , Schizophrenia , Humans , Crystallography, X-Ray , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/therapeutic use , Phosphodiesterase Inhibitors/chemistry , Phosphoric Diester Hydrolases/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrimidines/chemistry , Schizophrenia/drug therapy , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 27(9): 2038-2046, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28285916

ABSTRACT

HIV integrase strand transfer inhibitors (InSTIs) represent an important class of antiviral therapeutics with proven efficacy and excellent tolerability for the treatment of HIV infections. In 2007, Raltegravir became the first marketed strand transfer inhibitor pioneering the way to a first-line therapy for treatment-naïve patients. Challenges with this class of therapeutics remain, including frequency of the dosing regimen and the genetic barrier to resistance. To address these issues, research towards next-generation integrase inhibitors has focused on imparting potency against RAL-resistent mutants and improving pharmacokinetic profiles. Herein, we detail medicinal chemistry efforts on a novel class of 2-pyridinone aminal InSTIs, inpsired by MK-0536, which led to the discovery of important lead molecules for our program. Systematic optimization carried out at the amide and aminal positions on the periphery of the core provided the necessary balance of antiviral activity and physiochemical properties. These efforts led to a novel aminal lead compound with the desired virological profile and preclinical pharmacokinetic profile to support a once-daily human dose prediction.


Subject(s)
HIV Integrase Inhibitors/chemistry , HIV Integrase Inhibitors/pharmacology , HIV Integrase/metabolism , HIV-1/enzymology , Pyridones/chemistry , Pyridones/pharmacology , Animals , Dogs , HIV Infections/drug therapy , HIV Integrase Inhibitors/pharmacokinetics , HIV-1/drug effects , Humans , Molecular Docking Simulation , Pyridones/pharmacokinetics
5.
Bioorg Med Chem Lett ; 26(4): 1260-4, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26810316

ABSTRACT

Optimization of a benzimidazolone template for potency and physical properties revealed 5-aryl-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-ones as a key template on which to develop a new series of mGlu2 positive allosteric modulators (PAMs). Systematic investigation of aryl-SAR led to the identification of compound 27 as a potent and highly selective mGlu2 PAM with sufficient pharmacokinetics to advance to preclinical models of psychosis. Gratifyingly, compound 27 showed full efficacy in the PCP- and MK-801-induced hyperlocomotion assay in rats at CSF concentrations consistent with mGlu2 PAM potency.


Subject(s)
Imidazoles/chemistry , Pyridines/chemistry , Pyridones/chemistry , Receptors, Metabotropic Glutamate/chemistry , Allosteric Regulation , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Imidazoles/blood , Imidazoles/pharmacology , Imidazoles/therapeutic use , Locomotion/drug effects , Protein Binding , Psychotic Disorders/drug therapy , Psychotic Disorders/pathology , Pyridines/pharmacology , Pyridines/therapeutic use , Pyridones/blood , Pyridones/pharmacology , Rats , Receptors, Metabotropic Glutamate/metabolism , Structure-Activity Relationship
7.
J Med Chem ; 58(20): 8154-65, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26397965

ABSTRACT

The search for new molecular constructs that resemble the critical two-metal binding pharmacophore required for HIV integrase strand transfer inhibition represents a vibrant area of research within drug discovery. Here we present the discovery of a new class of HIV integrase strand transfer inhibitors based on the 2-pyridinone core of MK-0536. These efforts led to the identification of two lead compounds with excellent antiviral activity and preclinical pharmacokinetic profiles to support a once-daily human dose prediction. Dose escalating PK studies in dog revealed significant issues with limited oral absorption and required an innovative prodrug strategy to enhance the high-dose plasma exposures of the parent molecules.


Subject(s)
HIV Integrase Inhibitors/chemical synthesis , HIV Integrase Inhibitors/pharmacology , Pyridones/chemical synthesis , Pyridones/pharmacology , Animals , Area Under Curve , Dogs , Dose-Response Relationship, Drug , Drug Design , HIV Integrase/drug effects , HIV Integrase/metabolism , HIV Integrase Inhibitors/pharmacokinetics , HIV-1/drug effects , HIV-1/enzymology , HIV-1/genetics , Humans , Models, Molecular , Prodrugs , Pyridones/pharmacokinetics , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...