Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 23(18): 5239-43, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23927973

ABSTRACT

In this Letter, we describe the synthesis of several nonamidine analogs of biaryl acid factor VIIa inhibitor 1 containing weakly basic or nonbasic P1 groups. 2-Aminoisoquinoline was found to be an excellent surrogate for the benzamidine group (compound 2) wherein potent inhibition of factor VIIa is maintained relative to most other related serine proteases. In an unanticipated result, the m-benzamide P1 (compounds 21a and 21b) proved to be a viable benzamidine replacement, albeit with a 20-40 fold loss in potency against factor VIIa.


Subject(s)
Carboxylic Acids/chemistry , Drug Discovery , Factor VIIa/antagonists & inhibitors , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Benzamidines , Crystallography, X-Ray , Dose-Response Relationship, Drug , Factor VIIa/metabolism , Humans , Models, Molecular , Molecular Structure , Serine Proteinase Inhibitors/chemical synthesis , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 19(24): 6882-9, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19896847

ABSTRACT

We report the design and synthesis of a novel class of N,N'-disubstituted aroylguanidine-based lactam derivatives as potent and orally active FXa inhibitors. The structure-activity relationships (SAR) investigation led to the discovery of the nicotinoyl guanidine 22 as a potent FXa inhibitor (FXa IC(50)=4 nM, EC(2xPT)=7 microM). However, the potent CYP3A4 inhibition activity (IC(50)=0.3 microM) of 22 precluded its further development. Detailed analysis of the X-ray crystal structure of compound 22 bound to FXa indicated that the substituent at the 6-position of the nicotinoyl group of 22 would be solvent-exposed, suggesting that efforts to attenuate the unwanted CYP activity could focus at this position without affecting FXa potency significantly. Further SAR studies on the 6-substituted nicotinoyl guanidines resulted in the discovery of 6-(dimethylcarbamoyl) nicotinoyl guanidine 36 (BMS-344577, IC(50)=9 nM, EC(2xPT)=2.5 microM), which was found to be a selective, orally efficacious FXa inhibitor with an excellent in vitro liability profile, favorable pharmacokinetics and pharmacodynamics in animal models.


Subject(s)
Anticoagulants/chemistry , Factor Xa Inhibitors , Guanidines/chemistry , Serine Proteinase Inhibitors/chemistry , Anticoagulants/pharmacology , Cytochrome P-450 CYP3A , Cytochrome P-450 CYP3A Inhibitors , Drug Discovery , Guanidines/pharmacology , Humans , Inhibitory Concentration 50 , Serine Proteinase Inhibitors/pharmacology , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 19(15): 4034-41, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19541481

ABSTRACT

The N,N'-disubstituted cyanoguanidine is an excellent bioisostere of the thiourea and ketene aminal functional groups. We report the design and synthesis of a novel class of cyanoguanidine-based lactam derivatives as potent and orally active FXa inhibitors. The SAR studies led to the discovery of compound 4 (BMS-269223, K(i)=6.5nM, EC(2xPT)=32muM) as a selective, orally bioavailable FXa inhibitor with an excellent in vitro liability profile, favorable pharmacokinetics and pharmacodynamics in animal models. The X-ray crystal structure of 4 bound in FXa is presented and key ligand-protein interactions are discussed.


Subject(s)
Antithrombin III/pharmacology , Benzofurans/pharmacology , Guanidines/chemistry , Lactams/chemistry , Administration, Oral , Animals , Antithrombin III/chemistry , Benzofurans/chemistry , Chemistry, Pharmaceutical/methods , Crystallography, X-Ray/methods , Dogs , Haplorhini , Humans , Inhibitory Concentration 50 , Kinetics , Lactams/pharmacology , Ligands , Models, Chemical , Rats , Structure-Activity Relationship , Thiourea/chemistry
4.
J Med Chem ; 51(23): 7541-51, 2008 Dec 11.
Article in English | MEDLINE | ID: mdl-18998662

ABSTRACT

An indole-based P1 moiety was incorporated into a previously established factor Xa inhibitor series. The indole group was designed to hydrogen-bond with the carbonyl of Gly218, while its 3-methyl or 3-chloro substituent was intended to interact with Tyr228. These interactions were subsequently observed in the X-ray crystal structure of compound 18. SAR studies led to the identification of compound 20 as the most potent FXa inhibitor in this series (IC(50) = 2.4 nM, EC(2xPT) = 1.2 microM). An in-depth energetic analysis suggests that the increased binding energy of 3-chloroindole-versus 3-methylindole-containing compounds in this series is due primarily to (a) the more hydrophobic nature of chloro- versus methyl-containing compounds and (b) an increased interaction of 3-chloroindole versus 3-methylindole with Gly218 backbone. The stronger hydrophobicity of chloro- versus methyl-substituted aromatics may partly explain the general preference for chloro- versus methyl-substituted P1 groups in FXa, which extends beyond the current series.


Subject(s)
Drug Design , Enzyme Inhibitors , Factor Xa Inhibitors , Indoles , Quantum Theory , Animals , Binding Sites/drug effects , Computer Simulation , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Factor Xa/drug effects , Humans , Hydrogen Bonding , Indoles/chemical synthesis , Indoles/chemistry , Indoles/pharmacology , Mice , Models, Chemical , Models, Molecular , Structure-Activity Relationship , Survival Analysis , Venoms/pharmacology , Venous Thrombosis/drug therapy , Venous Thrombosis/enzymology
5.
Eur J Pharmacol ; 570(1-3): 167-74, 2007 Sep 10.
Article in English | MEDLINE | ID: mdl-17597608

ABSTRACT

The effect of inhibiting activated blood coagulation factor XIa was determined in rat models of thrombosis and hemostasis. BMS-262084 is an irreversible and selective small molecule inhibitor of factor XIa with an IC(50) of 2.8 nM against human factor XIa. BMS-262084 doubled the activated thromboplastin time in human and rat plasma at 0.14 and 2.2 microM, respectively. Consistent with factor XIa inhibition, the prothrombin time was unaffected at up to 100 microM. BMS-262084 administered as an intravenous loading plus sustaining infusion was effective against FeCl(2)-induced thrombosis in both the vena cava and carotid artery. Maximum thrombus weight reductions of 97 and 73%, respectively (P<0.05), were achieved at a pretreatment dose of 12 mg/kg+12 mg/kg/h which increased the ex vivo activated thromboplastin time to 3.0 times control. This dose level also arrested growth of venous and arterial thrombi when administered after partial thrombus formation. BMS-262084 was most potent in FeCl(2)-induced venous thrombosis, decreasing thrombus weight 38% (P<0.05) at a threshold dose of 0.2 mg/kg+0.2 mg/kg/h. In contrast, doses of up to 24 mg/kg+24 mg/kg/h had no effect on either tissue factor-induced venous thrombosis or the ex vivo prothrombin time. Doses of up to 24 mg/kg+24 mg/kg/h also did not significantly prolong bleeding time provoked by either puncture of small mesenteric blood vessels, template incision of the renal cortex, or cuticle incision. These results demonstrate that pharmacologic inhibition of factor XIa achieves antithrombotic efficacy with minimal effects on provoked bleeding.


Subject(s)
Azetidines/therapeutic use , Carotid Artery Thrombosis/drug therapy , Factor XIa/antagonists & inhibitors , Fibrinolytic Agents/therapeutic use , Hemostatics/therapeutic use , Piperazines/therapeutic use , Venous Thrombosis/drug therapy , Animals , Carotid Artery Thrombosis/physiopathology , Humans , Male , Partial Thromboplastin Time , Prothrombin Time , Rats , Rats, Sprague-Dawley , Tryptases/antagonists & inhibitors , Venous Thrombosis/physiopathology
7.
Bioorg Med Chem Lett ; 14(9): 2227-31, 2004 May 03.
Article in English | MEDLINE | ID: mdl-15081014

ABSTRACT

Azetidinones such as BMS-363131 (2) and BMS-363130 (3), which contain a guanidine group in the C-3 side chain were previously shown to be very potent inhibitors of human tryptase with high selectivity versus other serine proteases, including trypsin. In this letter, we describe the discovery of a number of potent azetidinone tryptase inhibitors in which the guanidine moiety at the ring C-3 position is replaced with primary or secondary amine or aminopyridine functionality. In particular, BMS-354326 (4) is a highly potent tryptase inhibitor (IC(50)=1.8 nM), which has excellent selectivity against trypsin and most other related serine proteases.


Subject(s)
Azetidines/chemical synthesis , Serine Endopeptidases/drug effects , Serine Proteinase Inhibitors/chemical synthesis , Azetidines/chemistry , Azetidines/pharmacology , Humans , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Tryptases
8.
Bioorg Med Chem Lett ; 14(9): 2233-9, 2004 May 03.
Article in English | MEDLINE | ID: mdl-15081015

ABSTRACT

A series of nonguanidine N1-activated C4-carboxy azetidinone tryptase inhibitors was prepared by solid-phase methodology to quickly assess the SAR associated with distal functionality on the N1-activating group. From these studies, potent inhibitors with improved specificity were discovered.


Subject(s)
Azetidines/chemical synthesis , Azetidines/pharmacology , Serine Endopeptidases/drug effects , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/pharmacology , Azetidines/chemistry , Crystallography, X-Ray , Models, Molecular , Serine Endopeptidases/chemistry , Serine Proteinase Inhibitors/chemistry , Structure-Activity Relationship , Tryptases
9.
Bioorg Med Chem Lett ; 14(2): 309-12, 2004 Jan 19.
Article in English | MEDLINE | ID: mdl-14698147

ABSTRACT

The serine protease tryptase has been associated with a broad range of allergic and inflammatory diseases and, in particular, has been implicated as a critical mediator of asthma. The inhibition of tryptase therefore has the potential to be a valuable therapy for asthma. The synthesis, employing solution phase parallel methods, and SAR of a series of novel 2-azepanone tryptase inhibitors are presented. A member of this series, 8t, was identified as a potent inhibitor of human tryptase (IC(50)=38 nM) with selectivity >/=330-fold versus related serine proteases (trypsin, plasmin, uPA, tPA, APC, alpha-thrombin, and FXa) [corrected].


Subject(s)
Azepines/chemical synthesis , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/chemical synthesis , Azepines/pharmacology , Humans , Serine Proteinase Inhibitors/pharmacology , Tryptases
10.
Bioorg Med Chem Lett ; 12(21): 3229-33, 2002 Nov 04.
Article in English | MEDLINE | ID: mdl-12372540

ABSTRACT

A series of N1-activated C4-carboxy azetidinones was prepared and tested as inhibitors of human tryptase. The key stereochemical and functional features required for potency, serine protease specificity and aqueous stability were determined. From these studies compound 2, BMS-262084, was identified as a potent and selective tryptase inhibitor which, when dosed intratracheally in ovalbumin-sensitized guinea pigs, reduced allergen-induced bronchoconstriction and inflammatory cell infiltration into the lung.


Subject(s)
Anti-Asthmatic Agents/chemical synthesis , Anti-Asthmatic Agents/pharmacology , Azetidines/chemical synthesis , Azetidines/pharmacology , Piperazines/chemical synthesis , Piperazines/pharmacology , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/pharmacology , Animals , Asthma/drug therapy , Asthma/pathology , Bronchoconstriction/drug effects , Crystallography, X-Ray , Extracellular Space/drug effects , Guinea Pigs , Half-Life , Humans , Inflammation/pathology , Lung/pathology , Molecular Conformation , Ovalbumin/immunology , Structure-Activity Relationship , Tryptases
11.
Bioorg Med Chem Lett ; 12(21): 3235-8, 2002 Nov 04.
Article in English | MEDLINE | ID: mdl-12372541

ABSTRACT

The serine protease tryptase has been implicated in allergic and inflammatory diseases and associated with asthma. The synthesis and SAR of a series of N1-activated-4-carboxy azetidinones are described, resulting in identification of BMS-363131 (2) as a potent inhibitor of human tryptase (IC(50)<1.7 nM) with high selectivity (>3000-fold) for tryptase versus related serine proteases including trypsin.


Subject(s)
Anti-Asthmatic Agents/chemical synthesis , Anti-Asthmatic Agents/pharmacology , Azetidines/chemical synthesis , Azetidines/pharmacology , Aziridines/chemical synthesis , Aziridines/pharmacology , Piperazines/chemical synthesis , Piperazines/pharmacology , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/pharmacology , Animals , Asthma/drug therapy , Asthma/immunology , Drug Stability , Guinea Pigs , Humans , Ovalbumin/immunology , Stereoisomerism , Structure-Activity Relationship , Tryptases
SELECTION OF CITATIONS
SEARCH DETAIL
...