Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 15(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38927730

ABSTRACT

Pre-harvest sprouting (PHS) resistance is a complex trait, and many genes influencing the germination process of winter wheat have already been described. In the light of interannual climate variation, breeding for PHS resistance will remain mandatory for wheat breeders. Several tests and traits are used to assess PHS resistance, i.e., sprouting scores, germination index, and falling number (FN), but the variation of these traits is highly dependent on the weather conditions during field trials. Here, we present a method to assess falling number stability (FNS) employing an after-ripening period and the wetting of the kernels to improve trait variation and thus trait heritability. Different genome-based prediction scenarios within and across two subsequent seasons based on overall 400 breeding lines were applied to assess the predictive abilities of the different traits. Based on FNS, the genome-based prediction of the breeding values of wheat breeding material showed higher correlations across seasons (r=0.505-0.548) compared to those obtained for other traits for PHS assessment (r=0.216-0.501). By weighting PHS-associated quantitative trait loci (QTL) in the prediction model, the average predictive abilities for FNS increased from 0.585 to 0.648 within the season 2014/2015 and from 0.649 to 0.714 within the season 2015/2016. We found that markers in the Phs-A1 region on chromosome 4A had the highest effect on the predictive abilities for FNS, confirming the influence of this QTL in wheat breeding material, whereas the dwarfing genes Rht-B1 and Rht-D1 and the wheat-rye translocated chromosome T1RS.1BL exhibited effects, which are well-known, on FN per se exclusively.


Subject(s)
Germination , Plant Breeding , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/growth & development , Quantitative Trait Loci/genetics , Plant Breeding/methods , Germination/genetics , Seasons , Genome, Plant/genetics , Phenotype , Genomics/methods
2.
Front Plant Sci ; 14: 1235175, 2023.
Article in English | MEDLINE | ID: mdl-37731976

ABSTRACT

Mission-oriented governance of research focuses on inspirational, yet attainable goals and targets the sustainable development goals through innovation pathways. We disentangle its implications for plant breeding research and thus impacting the sustainability transformation of agricultural systems, as it requires improved crop varieties and management practices. Speedy success in plant breeding is vital to lower the use of chemical fertilizers and pesticides, increase crop resilience to climate stresses and reduce postharvest losses. A key question is how this success may come about? So far plant breeding research has ignored wider social systems feedbacks, but governance also failed to deliver a set of systemic breeding goals providing directionality and organization to research policy of the same. To address these challenges, we propose a heuristic illustrating the core elements needed for governing plant breeding research: Genetics, Environment, Management and Social system (GxExMxS) are the core elements for defining directions for future breeding. We illustrate this based on historic cases in context of current developments in plant phenotyping technologies and derive implications for governing research infrastructures and breeding programs. As part of mission-oriented governance we deem long-term investments into human resources and experimental set-ups for agricultural systems necessary to ensure a symbiotic relationship for private and public breeding actors and recommend fostering collaboration between social and natural sciences for working towards transdisciplinary collaboration.

3.
Plants (Basel) ; 12(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36771509

ABSTRACT

To evaluate genetic variability and seedling plant response to a dominating Warrior (-) race of yellow rust in Northern and Central European germplasm, we used a population of 229 winter wheat cultivars and breeding lines for a genome-wide association study (GWAS). A wide variation in yellow rust disease severity (based on infection types 1-9) was observed in this panel. Four breeding lines, TS049 (from Austria), TS111, TS185, and TS229 (from Germany), and one cultivar, TS158 (KWS Talent), from Germany were found to be resistant to Warrior (-) FS 53/20 and Warrior (-) G 23/19. The GWAS identified five significant SNPs associated with yellow rust on chromosomes 1B, 2A, 5B, and 7A for Warrior (-) FS 53/20, while one SNP on chromosome 5B was associated with disease for Warrior (-) G 23/19. For Warrior (-) FS 53/20, we discovered a new QTL for yellow rust resistance associated with the marker Kukri_c5357_323 on chromosome 1B. The resistant alleles G and T at the marker loci Kukri_c5357_323 on chromosome 1B and Excalibur_c17489_804 on chromosome 5B showed the largest effects (1.21 and 0.81, respectively) on the severity of Warrior (-) FS 53/20 and Warrior (-) G 23/19. Our results provide the basis for knowledge-based resistance breeding in the face of the enormous impact of the Warrior (-) race on wheat production in Europe.

4.
Plants (Basel) ; 11(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36015449

ABSTRACT

Grain protein content (GPC) is one of the most important criteria to determine the quality of common wheat (Triticum aestivum). One of the major obstacles for bread wheat production is the negative correlation between GPC and grain yield (GY). Previous studies demonstrated that the deviation from this inverse relationship is highly heritable. However, little is known about the genetics controlling these deviations in common wheat. To fill this gap, we performed quantitative trait locus (QTL) analysis for GY, GPC, and four derived GY-GPC indices using an eight-way multiparent advanced generation intercross population comprising 394 lines. Interval mapping was conducted using phenotypic data from up to nine environments and genotypic data from a 20k single-nucleotide polymorphism array. The four indices were highly heritable (0.76-0.88) and showed distinct correlations to GY and GPC. Interval mapping revealed that GY, GPC, and GY-GPC indices were controlled by 6, 12, and 12 unique QTL, of which each explained only a small amount of phenotypic variance (R2 ≤ 10%). Ten of the 12 index QTL were independent of loci affecting GY and GPC. QTL regions harboured several candidate genes, including Rht-1, WAPO-A1, TaTEF-7A, and NRT2.6-7A. The study confirmed the usefulness of indices to mitigate the inverse GY-GPC relationship in breeding, though the selection method should reflect their polygenic inheritance.

5.
Theor Appl Genet ; 135(10): 3583-3595, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36018343

ABSTRACT

KEY MESSAGE: We found two loci on chromosomes 2BS and 6AL that significantly contribute to stripe rust resistance in current European winter wheat germplasm. Stripe or yellow rust, caused by the fungus Puccinia striiformis Westend f. sp. tritici, is one of the most destructive wheat diseases. Sustainable management of wheat stripe rust can be achieved through the deployment of rust resistant cultivars. To detect effective resistance loci for use in breeding programs, an association mapping panel of 230 winter wheat cultivars and breeding lines from Northern and Central Europe was employed. Genotyping with the Illumina® iSelect® 25 K Infinium® single nucleotide polymorphism (SNP) genotyping array yielded 8812 polymorphic markers. Structure analysis revealed two subpopulations with 92 Austrian breeding lines and cultivars, which were separated from the other 138 genotypes from Germany, Norway, Sweden, Denmark, Poland, and Switzerland. Genome-wide association study for adult plant stripe rust resistance identified 12 SNP markers on six wheat chromosomes which showed consistent effects over several testing environments. Among these, two marker loci on chromosomes 2BS (RAC875_c1226_652) and 6AL (Tdurum_contig29607_413) were highly predictive in three independent validation populations of 1065, 1001, and 175 breeding lines. Lines with the resistant haplotype at both loci were nearly free of stipe rust symptoms. By using mixed linear models with those markers as fixed effects, we could increase predictive ability in the three populations by 0.13-0.46 compared to a standard genomic best linear unbiased prediction approach. The obtained results facilitate an efficient selection for stripe rust resistance against the current pathogen population in the Northern and Central European winter wheat gene pool.


Subject(s)
Basidiomycota , Triticum , Chromosome Mapping , Disease Resistance/genetics , Genome-Wide Association Study , Genomics , Linkage Disequilibrium , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Triticum/genetics , Triticum/microbiology
6.
Theor Appl Genet ; 134(5): 1435-1454, 2021 May.
Article in English | MEDLINE | ID: mdl-33712876

ABSTRACT

KEY MESSAGE: Quantitative trait locus (QTL) mapping of 15 yield component traits in a German multi-founder population identified eight QTL each controlling ≥2 phenotypes, including the genetic loci Rht24, WAPO-A1 and WAPO-B1. Grain yield in wheat (Triticum aestivum L.) is a polygenic trait representing the culmination of many developmental processes and their interactions with the environment. Toward maintaining genetic gains in yield potential, 'reductionist approaches' are commonly undertaken by which the genetic control of yield components, that collectively determine yield, are established. Here we use an eight-founder German multi-parental wheat population to investigate the genetic control and phenotypic trade-offs between 15 yield components. Increased grains per ear was significantly positively correlated with the number of fertile spikelets per ear and negatively correlated with the number of infertile spikelets. However, as increased grain number and fertile spikelet number per ear were significantly negatively correlated with thousand grain weight, sink strength limitations were evident. Genetic mapping identified 34 replicated quantitative trait loci (QTL) at two or more test environments, of which 24 resolved into eight loci each controlling two or more traits-termed here 'multi-trait QTL' (MT-QTL). These included MT-QTL associated with previously cloned genes controlling semi-dwarf plant stature, and with the genetic locus Reduced height 24 (Rht24) that further modulates plant height. Additionally, MT-QTL controlling spikelet number traits were located to chromosome 7A encompassing the gene WHEAT ORTHOLOG OF APO1 (WAPO-A1), and to its homoeologous location on chromosome 7B containing WAPO-B1. The genetic loci identified in this study, particularly those that potentially control multiple yield components, provide future opportunities for the targeted investigation of their underlying genes, gene networks and phenotypic trade-offs, in order to underpin further genetic gains in yield.


Subject(s)
Chromosomes, Plant/genetics , Genetics, Population , Genome, Plant , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Triticum/growth & development , Chromosome Mapping/methods , Gene Expression Regulation, Plant , Genome-Wide Association Study , Plant Breeding , Plant Proteins/metabolism , Triticum/classification , Triticum/genetics , Triticum/metabolism
7.
Front Plant Sci ; 12: 684671, 2021.
Article in English | MEDLINE | ID: mdl-35003147

ABSTRACT

Stripe rust caused by the biotrophic fungus Puccinia striiformis Westend. is one of the most important diseases of wheat worldwide, causing high yield and quality losses. Growing resistant cultivars is the most efficient way to control stripe rust, both economically and ecologically. Known resistance genes are already present in numerous cultivars worldwide. However, their effectiveness is limited to certain races within a rust population and the emergence of stripe rust races being virulent against common resistance genes forces the demand for new sources of resistance. Multiparent advanced generation intercross (MAGIC) populations have proven to be a powerful tool to carry out genetic studies on economically important traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for stripe rust resistance in the Bavarian MAGIC wheat population, comprising 394 F6 : 8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs was carried out for adult plant resistance in field trials at three locations across three years and for seedling resistance in a growth chamber. In total, 21 QTL for stripe rust resistance corresponding to 13 distinct chromosomal regions were detected, of which two may represent putatively new QTL located on wheat chromosomes 3D and 7D.

8.
Theor Appl Genet ; 134(1): 37-51, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33201290

ABSTRACT

KEY MESSAGE: The Bavarian MAGIC Wheat population, comprising 394 F6:8 recombinant inbred lines was phenotyped for Puccinia triticina resistance in multi-years' field trials at three locations and in a controlled environment seedling test. Simple intervall mapping revealed 19 QTL, corresponding to 11 distinct chromosomal regions. The biotrophic rust fungus Puccinia triticina is one of the most important wheat pathogens with the potential to cause yield losses up to 70%. Growing resistant cultivars is the most cost-effective and environmentally friendly way to encounter this problem. The emergence of leaf rust races being virulent against common resistance genes increases the demand for wheat varieties with novel resistances. In the past decade, the use of complex experimental populations, like multiparent advanced generation intercross (MAGIC) populations, has risen and offers great advantages for mapping resistances. The genetic diversity of multiple parents, which has been recombined over several generations, leads to a broad phenotypic diversity, suitable for high-resolution mapping of quantitative traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for leaf rust resistance in the Bavarian MAGIC Wheat population, comprising 394 F6:8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs for adult plant resistance was carried out in field trials at three locations and two years, as well as in a controlled-environment seedling inoculation test. In total, interval mapping revealed 19 QTL, which corresponded to 11 distinct chromosomal regions controlling leaf rust resistance. Six of these regions may represent putative new QTL. Due to the elite parental material, RILs identified to be resistant to leaf rust can be easily introduced in breeding programs.


Subject(s)
Disease Resistance/genetics , Plant Diseases/genetics , Puccinia/pathogenicity , Quantitative Trait Loci , Triticum/genetics , Chromosome Mapping , Crosses, Genetic , Plant Breeding , Plant Diseases/microbiology , Triticum/microbiology
9.
Front Plant Sci ; 11: 577475, 2020.
Article in English | MEDLINE | ID: mdl-33362809

ABSTRACT

Wheat (Triticum aestivum L.) is a self-pollinating crop whose hybrids offer the potential to provide a major boost in yield. Male sterility induced by the cytoplasm of Triticum timopheevii is a powerful method for hybrid seed production. Hybrids produced by this method are often partially sterile, and full fertility restoration is crucial for wheat production using hybrid cultivars. To identify the genetic loci controlling fertility restoration in wheat, we produced two cytoplasmic male-sterile (CMS) backcross (BC1) mapping populations. The restorer lines Gerek 79 and 71R1203 were used to pollinate the male-sterile winter wheat line CMS-Sperber. Seed set and numbers of sterile spikelets per spike were evaluated in 340 and 206 individuals of the populations derived from Gerek 79 and 71R1203, respectively. Genetic maps were constructed using 930 and 994 single nucleotide polymorphism (SNP) markers, spanning 2,160 and 2,328 cM over 21 linkage groups in the two populations, respectively. Twelve quantitative trait loci (QTL) controlled fertility restoration in both BC1 populations, including a novel restorer-of-fertility (Rf) locus flanked by the SNP markers IWB72413 and IWB1550 on chromosome 6AS. The locus was mapped as a qualitative trait in the BC1 Gerek 79 population and was designated Rf9. One hundred-nineteen putative candidate genes were predicted within the QTL region on chromosome 6AS. Among them were genes encoding mitochondrial transcription termination factor and pentatricopeptide repeat-containing proteins that are known to be associated with fertility restoration. This finding is a promising step to better understand the functions of genes for improving fertility restoration in hybrid wheat.

10.
G3 (Bethesda) ; 9(5): 1745-1757, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30902891

ABSTRACT

Bread wheat (Triticum aestivum L.) is one of the world's most important crop species. The development of new varieties resistant to multiple pathogens is an ongoing task in wheat breeding, especially in times of increasing demand for sustainable agricultural practices. Despite this, little is known about the relations between various fungal disease resistances at the genetic level, and the possible consequences for wheat breeding strategies. As a first step to fill this gap, we analyzed the genetic relations of resistance to the three fungal diseases - powdery mildew (PM), septoria tritici blotch (STB), and tan spot (TS) - using a winter wheat multiparent advanced generation intercross population. Six, seven, and nine QTL for resistance to PM, STB, and TS, respectively, were genetically mapped. Additionally, 15 QTL were identified for the three agro-morphological traits plant height, ear emergence time, and leaf angle distribution. Our results suggest that resistance to STB and TS on chromosome 2B is conferred by the same genetic region. Furthermore, we identified two genetic regions on chromosome 1AS and 7AL, which are associated with all three diseases, but not always in a synchronal manner. Based on our results, we conclude that parallel marker-assisted breeding for resistance to the fungal diseases PM, STB, and TS appears feasible. Knowledge of the genetic co-localization of alleles with contrasting effects for different diseases, such as on chromosome 7AL, allows the trade-offs of selection of these regions to be better understood, and ultimately determined at the genic level.


Subject(s)
Ascomycota , Disease Resistance/genetics , Host-Pathogen Interactions/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Triticum/genetics , Triticum/microbiology , Chromosome Mapping , Genetics, Population , Phenotype , Quantitative Trait Loci
11.
Front Plant Sci ; 9: 1825, 2018.
Article in English | MEDLINE | ID: mdl-30574161

ABSTRACT

Multiparent advanced generation intercross (MAGIC) populations were recently developed to allow the high-resolution mapping of quantitative traits. We present a genetic linkage map of an elite but highly diverse eight-founder MAGIC population in common wheat (Triticum aestivum L.). Our MAGIC population is composed of 394 F6:8 recombinant inbred lines lacking significant signatures of population structure. The linkage map included 5435 SNP markers distributed over 2804 loci and spanning 5230 cM. The analysis of population parameters, including genetic structure, kinship, founder probabilities, and linkage disequilibrium and congruency to other maps indicated appropriate construction of both the population and the genetic map. It was shown that eight-founder MAGIC populations exhibit a greater number of loci and higher recombination rates, especially in the pericentromeric regions, compared to four-founder MAGIC, and biparental populations. In addition, our greatly simplified eight-parental MAGIC mating design with an additional eight-way intercross step was found to be equivalent to a MAGIC design with all 210 possible four-way crosses regarding the levels of missing founder assignments and the number of recombination events. Furthermore, the MAGIC population captured 71.7% of the allelic diversity available in the German wheat breeding gene pool. As a proof of principle, we demonstrated the application of the resource for quantitative trait loci mapping analyzing seedling resistance to powdery mildew. As wheat is a crop with many breeding objectives, this resource will allow scientists and breeders to carry out genetic studies for a wide range of breeder-relevant parameters in a single genetic background and reveal possible interactions between traits of economic importance.

12.
Mol Genet Genomics ; 293(2): 451-462, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29177892

ABSTRACT

Hybrid wheat breeding has the potential to significantly increase wheat productivity compared to line breeding. The induction of male sterility by the cytoplasm of Triticum timopheevii Zhuk. is a widely discussed approach to ensure cross-pollination between parental inbred lines in hybrid wheat seed production. As fertility restoration in hybrids with this cytoplasm is often incomplete, understanding the underlying genetics is a prerequisite to apply this technology. A promising component for fertility restoration is the restorer locus Rf1, which was first detected on chromosome 1A of the restorer accession R3. In the present study, we performed quantitative trait locus (QTL) analyses to locate Rf1 and estimate its effect in populations involving the restorer lines R3, R113 and L19. Molecular markers linked to Rf1 in these populations were used to analyse the genomic target region in T. timopheevii accessions and common wheat breeding lines. The QTL analyses revealed that Rf1 interacted with a modifier locus on chromosome 1BS and the restorer locus Rf4 on chromosome 6B. The modifier locus significantly influenced both the penetrance and expressivity of Rf1. Whereas Rf1 exhibited expressivity higher than that of Rf4, the effects of these loci were not additive. Evaluating the marker haplotype for the Rf1 region, we propose that the restoring Rf1 allele may be derived exclusively from T. timopheevii. The present study demonstrates that interactions between restorer and modifier loci play a critical role in fertility restoration of common wheat with the cytoplasm of T. timopheevii.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Plant/genetics , Genes, Plant/genetics , Quantitative Trait Loci/genetics , Triticum/genetics , Crosses, Genetic , Fertility/genetics , Genetics, Population/methods , Haplotypes , Hybridization, Genetic , Plant Breeding/methods
13.
J Appl Genet ; 57(4): 467-476, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27108336

ABSTRACT

Genetic factors controlling thousand-kernel weight (TKW) were characterized for their association with other seed traits, including kernel width, kernel length, ratio of kernel width to kernel length (KW/KL), kernel area, and spike number per m2 (SN). For this purpose, a genetic map was established utilizing a doubled haploid population derived from a cross between German winter wheat cultivars Pamier and Format. Association studies in a diversity panel of elite cultivars supplemented genetic analysis of kernel traits. In both populations, genomic signatures of 13 candidate genes for TKW and kernel size were analyzed. Major quantitative trait loci (QTL) for TKW were identified on chromosomes 1B, 2A, 2D, and 4D, and their locations coincided with major QTL for kernel size traits, supporting the common belief that TKW is a function of other kernel traits. The QTL on chromosome 2A was associated with TKW candidate gene TaCwi-A1 and the QTL on chromosome 4D was associated with dwarfing gene Rht-D1. A minor QTL for TKW on chromosome 6B coincided with TaGW2-6B. The QTL for kernel dimensions that did not affect TKW were detected on eight chromosomes. A major QTL for KW/KL located at the distal tip of chromosome arm 5AS is being reported for the first time. TaSus1-7A and TaSAP-A1, closely linked to each other on chromosome 7A, could be related to a minor QTL for KW/KL. Genetic analysis of SN confirmed its negative correlation with TKW in this cross. In the diversity panel, TaSus1-7A was associated with TKW. Compared to the Pamier/Format bi-parental population where TaCwi-A1a was associated with higher TKW, the same allele reduced grain yield in the diversity panel, suggesting opposite effects of TaCwi-A1 on these two traits.


Subject(s)
Chromosome Mapping , Quantitative Trait Loci , Seeds/genetics , Triticum/genetics , Alleles , Chromosomes, Plant , Crosses, Genetic , Gene Frequency , Genetic Linkage , Genome, Plant , Haploidy , Phenotype
14.
J Appl Genet ; 56(3): 277-85, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25924791

ABSTRACT

Global wheat production will benefit from cultivars showing genetic resistance to preharvest sprouting (PHS). Working on PHS resistance is still challenging due to the lack of simple protocols for the provocation of symptoms for appropriate trait differentiation under highly variable environmental conditions. Therefore, the availability of molecular markers for enhancing PHS resistance in breeding lines is of utmost importance. Genome-wide association mapping was performed to unravel the genetics of PHS resistance in a diversity panel of 124 winter wheat genotypes using both random and targeted marker locus approaches. Data for grain germination tests, spike wetting treatments, and field sprouting damage measurements of grains were collected in 11, 12, and four environments, respectively. Twenty-two quantitative trait loci (QTL) linked with 40 markers were detected for the three traits commonly used for assessing the PHS resistance of cultivars. All but five QTL on chromosomes 1B, 1D (two QTL), 3D, and 5D showed locations similar to previous studies, including prominent QTL on chromosomes 2BS, 3AS, and 4AL. The highest retrieval rate across environments was found for QTL on chromosomes 1D, 2BS, 3D, 4AL, and 7B. The study identified genomic signatures useful for marker-assisted improvement of PHS resistance not only in European breeding programs, but of global significance.


Subject(s)
Chromosome Mapping , Germination/genetics , Quantitative Trait Loci , Triticum/genetics , Genetic Association Studies , Genetic Markers , Genotype , Phenotype , Sequence Analysis, DNA
15.
J Appl Genet ; 54(3): 259-63, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23794194

ABSTRACT

Fungal diseases of wheat, including powdery mildew, cause significant crop, yield and quality losses throughout the world. Knowledge of the genetic basis of powdery mildew resistance will greatly support future efforts to develop and cultivate resistant cultivars. Studies were conducted on cultivated emmer-derived wheat line K2 to identify genes involved in powdery mildew resistance at the seedling and adult plant growth stages using a BC(1) doubled haploid population derived from a cross between K2 and susceptible cultivar Audace. A single gene was located distal to microsatellite marker Xgwm294 on the long arm of chromosome 2A. Quantitative trait loci (QTL) analysis indicated that the gene was also effective at the adult plant stage, explaining up to 79.0 % of the variation in the progeny. Comparison of genetic maps indicated that the resistance gene in K2 was different from Pm4, the only other formally named resistance gene located on chromosome 2AL, and PmHNK54, a gene derived from Chinese germplasm. The new gene was designated Pm50.


Subject(s)
Ascomycota , Disease Resistance/genetics , Plant Diseases/genetics , Triticum/genetics , Triticum/immunology , Chromosome Mapping/methods , Chromosomes, Plant , Crosses, Genetic , Gene Deletion , Genes, Plant , Genetic Linkage , Genetic Markers , Haploidy , Microsatellite Repeats/genetics , Plant Diseases/immunology , Quantitative Trait Loci/genetics
16.
Theor Appl Genet ; 119(2): 325-32, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19418038

ABSTRACT

We report on the verification of a resistance quantitative trait locus (QTL) on chromosome 1BL (now designated Qfhs.lfl-1BL) which had been previously identified in the winter wheat cultivar Cansas. For a more precise estimation of the QTL effect and its influence on plant height and heading date lines with a more homogeneous genetic background were created and evaluated in four environments after spray inoculation with Fusarium culmorum. Qfhs.lfl-1BL reduced FHB severity by 42% relative to lines without the resistance allele. This QTL did not influence plant height, but significantly delayed heading date by one day. All of the most resistant genotypes of the verification population carried this major QTL displaying its importance for disease resistance. This resistance QTL has not only been found in the cultivar Cansas, but also in the three European winter wheat cultivars Biscay, History and Pirat. A subsequent meta-analysis confirmed the presence of a single QTL on the long arm of chromosome 1B originating from the four mentioned cultivars. Altogether, the results of the present study indicate that Qfhs.lfl-1BL is an important component of FHB resistance in European winter wheat and support the view that this QTL would be effective and valuable in backcross breeding programmes.


Subject(s)
Fusarium/physiology , Immunity, Innate/genetics , Plant Diseases/immunology , Quantitative Trait Loci/genetics , Seasons , Triticum/genetics , Triticum/microbiology , Alleles , Chromosome Segregation , Chromosomes, Plant/genetics , Europe , Microsatellite Repeats/genetics , Phenotype , Plant Diseases/genetics , Plant Diseases/microbiology
17.
Theor Appl Genet ; 117(7): 1119-28, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18670751

ABSTRACT

Fusarium head blight (FHB) resistance is of particular importance in wheat breeding programmes due to the detrimental effects of this fungal disease on human and animal health, yield and grain quality. Segregation for FHB resistance in three European winter wheat populations enabled the identification of resistance loci in well-adapted germplasm. Populations obtained from crosses of resistant cultivars Apache, History and Romanus with susceptible semi-dwarfs Biscay, Rubens and Pirat, respectively, were mapped and analysed to identify quantitative trait loci (QTL) for FHB severity, ear emergence time and plant height. The results of the present study together with previous studies in UK winter wheat indicated that the semi-dwarfing allele Rht-D1b seems to be the major source for FHB susceptibility in European winter wheat. The high resistance level of the cultivars Romanus and History was conditioned by several minor resistance QTL interacting with the environment and the absence of Rht-D1b. In contrast, the semi-dwarf parents contributed resistance alleles of major effects apparently compensating the negative effects of Rht-D1b on FHB reaction. The moderately resistant cultivar Apache contributed a major QTL on chromosome 6A in a genome region previously shown to carry resistance loci to FHB. A total of 18 genomic regions were repeatedly associated with FHB resistance. The results indicate that common resistance-associated genes or genomic regions are present in European winter wheats.


Subject(s)
Fusarium , Plant Diseases/genetics , Triticum/genetics , Breeding , Chromosome Mapping , Chromosomes, Plant , Immunity, Innate/genetics , Phenotype , Plant Diseases/microbiology , Quantitative Trait Loci , Triticum/microbiology
18.
Theor Appl Genet ; 111(5): 879-87, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16044270

ABSTRACT

The inheritance of extreme resistance to PVY (Ry (sto)) by a single dominant locus was confirmed by obtaining a 1:1 segregation ratio in a virus inoculation test with 28 resistant (Ryry) to 29 susceptible (ryry) anther culture-derived dihaploid lines (2n=2x=24) from cv. "Assia" (2n=4x=48) having extreme resistance derived from Solanum stoloniferum in simplex constitution (Ryryryry). Twelve Ry (sto) markers selected in AFLP assays using bulked segregant analysis were applied to 106 tested potato cultivars from Germany, The Netherlands and Poland and 19 potato cultivars were identified by these markers as extremely resistant to PVY in alignment with phenotypic data. The locus for extreme resistance (Ry (sto)) to PVY was mapped on chromosome XII co-segregating with the SSR marker STM 0003. The utility of anther-culture derived dihaploid potatoes for genetic marker development was demonstrated. Marker transferability from diploids to tetraploids provides an optimistic potential for marker-assisted selection in potato breeding programs.


Subject(s)
Chromosomes, Plant , Potyvirus/pathogenicity , Solanum tuberosum/genetics , Solanum tuberosum/virology , Base Sequence , Chromosome Mapping , DNA, Plant/genetics , DNA, Plant/isolation & purification , Diploidy , Disease Susceptibility , Flowers/genetics , Haploidy , Immunity, Innate/genetics , Plant Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...