Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 109(46): E3186-95, 2012 Nov 13.
Article in English | MEDLINE | ID: mdl-23100531

ABSTRACT

Although macrophages are widely recognized to have a profibrotic role in inflammation, we have used a highly tractable CCl(4)-induced model of reversible hepatic fibrosis to identify and characterize the macrophage phenotype responsible for tissue remodeling: the hitherto elusive restorative macrophage. This CD11B(hi) F4/80(int) Ly-6C(lo) macrophage subset was most abundant in livers during maximal fibrosis resolution and represented the principle matrix metalloproteinase (MMP) -expressing subset. Depletion of this population in CD11B promoter-diphtheria toxin receptor (CD11B-DTR) transgenic mice caused a failure of scar remodeling. Adoptive transfer and in situ labeling experiments showed that these restorative macrophages derive from recruited Ly-6C(hi) monocytes, a common origin with profibrotic Ly-6C(hi) macrophages, indicative of a phenotypic switch in vivo conferring proresolution properties. Microarray profiling of the Ly-6C(lo) subset, compared with Ly-6C(hi) macrophages, showed a phenotype outside the M1/M2 classification, with increased expression of MMPs, growth factors, and phagocytosis-related genes, including Mmp9, Mmp12, insulin-like growth factor 1 (Igf1), and Glycoprotein (transmembrane) nmb (Gpnmb). Confocal microscopy confirmed the postphagocytic nature of restorative macrophages. Furthermore, the restorative macrophage phenotype was recapitulated in vitro by the phagocytosis of cellular debris with associated activation of the ERK signaling cascade. Critically, induced phagocytic behavior in vivo, through administration of liposomes, increased restorative macrophage number and accelerated fibrosis resolution, offering a therapeutic strategy to this orphan pathological process.


Subject(s)
Antigens, Ly/immunology , Carbon Tetrachloride Poisoning/immunology , Gene Expression Regulation/immunology , Liver Cirrhosis/immunology , Macrophages/immunology , Monocytes/immunology , Animals , Antigens, Ly/genetics , CD11b Antigen/genetics , CD11b Antigen/immunology , Carbon Tetrachloride/toxicity , Carbon Tetrachloride Poisoning/genetics , Carbon Tetrachloride Poisoning/pathology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/immunology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/immunology , Macrophages/pathology , Matrix Metalloproteinase 12/genetics , Matrix Metalloproteinase 12/immunology , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/immunology , Mice , Mice, Transgenic , Monocytes/pathology
2.
Hepatology ; 55(6): 1965-75, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22223197

ABSTRACT

UNLABELLED: Elastin has been linked to maturity of liver fibrosis. To date, the regulation of elastin secretion and its degradation in liver fibrosis has not been characterized. The aim of this work was to define elastin accumulation and the role of the paradigm elastase macrophage metalloelastase (MMP-12) in its turnover during fibrosis. Liver fibrosis was induced by either intraperitoneal injections of carbon tetrachloride (CCl(4) ) for up to 12 weeks (rat and mouse) or oral administration of thioacetamide (TAA) for 1 year (mouse). Elastin synthesis, deposition, and degradation were investigated by immunohistochemistry, quantitative polymerase chain reaction (qPCR), western blotting, and casein zymography. The regulation of MMP-12 elastin degradation was defined mechanistically using CD11b-DTR and MMP-12 knockout mice. In a CCl(4) model of fibrosis in rat, elastin deposition was significantly increased only in advanced fibrosis. Tropoelastin expression increased with duration of injury. MMP-12 protein levels were only modestly changed and in coimmunoprecipitation experiments MMP-12 was bound in greater quantities to its inhibitor TIMP-1 in advanced versus early fibrosis. Immunohistochemistry and macrophage depletion experiments indicated that macrophages were the sole source of MMP-12. Exposure of CCl(4) in MMP-12(-/-) mice led to a similar degree of overall fibrosis compared to wildtype (WT) but increased perisinusoidal elastin. Conversely, oral administration of TAA caused both higher elastin accumulation and higher fibrosis in MMP-12(-/-) mice compared with WT. CONCLUSION: Elastin is regulated at the level of degradation during liver fibrosis. Macrophage-derived MMP-12 regulates elastin degradation even in progressive experimental liver fibrosis. These observations have important implications for the design of antifibrotic therapies.


Subject(s)
Elastin/metabolism , Liver Cirrhosis, Experimental/metabolism , Macrophages/enzymology , Matrix Metalloproteinase 12/physiology , Animals , Carbon Tetrachloride/toxicity , Liver/metabolism , Matrix Metalloproteinase 12/genetics , Mice , Mice, Inbred C57BL , Rats , Tissue Inhibitor of Metalloproteinase-1/genetics , Tropoelastin/biosynthesis
3.
Liver Int ; 29(7): 966-78, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19580633

ABSTRACT

BACKGROUND AND AIMS: Hepatic stellate cells (HSC) are known to synthesise excess matrix that characterises liver fibrosis and cirrhosis. Activated HSC express the matrix-degrading matrix metalloproteinase enzymes (MMPs) and their tissue inhibitors (TIMPs). During spontaneous recovery from experimental liver fibrosis, the expression of TIMP-1 declines and hepatic collagenolytic activity increases. This is accompanied by HSC apoptosis. In this study, we examine a potential mechanism whereby MMP activity might induce HSC apoptosis by cleaving N-cadherin at the cell surface. RESULTS: N-cadherin expression was upregulated in human HSC during activation in culture. Addition of function-blocking antibodies or a peptide targeting the extracellular domain of N-cadherin, to cultured HSC, promoted apoptosis. During apoptosis, there was cleavage of N-cadherin into 20-100 kDa fragments. MMP-2 became activated early during HSC apoptosis and directly cleaved N-cadherin in vitro. Addition of activated MMP-2 to HSCs in culture resulted in enhanced apoptosis and loss of N-cadherin. CONCLUSIONS: Together, these studies identify a role for both N-cadherin and MMP-2 in mediating HSC apoptosis, where N-cadherin works to provide a cell survival stimulus and MMP-2 promotes HSC apoptosis concomitant with N-cadherin degradation.


Subject(s)
Antigens, CD/metabolism , Apoptosis , Cadherins/metabolism , Hepatic Stellate Cells/enzymology , Liver Cirrhosis, Experimental/enzymology , Liver/enzymology , Matrix Metalloproteinase 2/metabolism , Animals , Apoptosis/drug effects , Carbon Tetrachloride , Caspase 3/metabolism , Cells, Cultured , Cycloheximide/pharmacology , Enzyme Activation , Gliotoxin/pharmacology , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/pathology , Humans , Liver/drug effects , Liver/pathology , Liver Cirrhosis, Experimental/chemically induced , Liver Cirrhosis, Experimental/pathology , Mice , Mice, Inbred C57BL , Rats , Recombinant Proteins/metabolism , Signal Transduction , Time Factors
4.
Hepatology ; 49(3): 901-10, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19072833

ABSTRACT

UNLABELLED: Hepatic myofibroblast apoptosis is critical to resolution of liver fibrosis. We show that human hepatic myofibroblasts co-express p75(NTR) (p75 neurotrophin receptor) and sortilin, thus facilitating differential responses to mature and pro nerve growth factor (proNGF). Although mature NGF is proapoptotic, proNGF protects human hepatic myofibroblasts from apoptosis. Moreover, in recovery from experimental liver fibrosis, the decrease in proNGF parallels loss of hepatic myofibroblasts by apoptosis. Macrophage-derived matrix metalloproteinase 7 (MMP7) cleaves proNGF in a concentration-dependent manner, and its expression in the liver coincides with falling proNGF levels. To define the dominant effect of p75(NTR)-mediated events in experimental liver fibrosis, we have used a mouse lacking the p75(NTR) ligand-binding domain but expressing the intracellular domain. We show that absence of p75(NTR) ligand-mediated signals leads to significantly retarded architectural resolution and reduced hepatic myofibroblast loss by apoptosis. Lack of the ligand-competent p75(NTR) limits hepatocyte and oval cell proliferative capacity in vivo without preventing hepatic stellate cell transdifferentiation. CONCLUSION: NGF species have a differential effect on hepatic myofibroblast survival. Our data suggest that cleavage of proNGF by MMP7 during the early phase of recovery from liver fibrosis alters the pro/mature NGF balance to facilitate hepatic myofibroblast loss. Whereas fibrosis develops in the absence of p75(NTR) signaling, the dominant effects of loss of p75(NTR) ligand-mediated events are the retardation of liver fibrosis resolution via regulation of hepatic myofibroblast proliferation and apoptosis, and the reduction of hepatocyte and oval cell proliferation.


Subject(s)
Apoptosis/physiology , Cell Proliferation , Fibroblasts/metabolism , Liver Cirrhosis/metabolism , Receptor, Nerve Growth Factor/metabolism , Recovery of Function/physiology , Signal Transduction/physiology , Adaptor Proteins, Vesicular Transport , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Fibroblasts/drug effects , Fibroblasts/pathology , Humans , Liver Cirrhosis/pathology , Liver Cirrhosis/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Protein Precursors/metabolism , Protein Precursors/pharmacology , Receptor, Nerve Growth Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...