Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Toxicol Methods ; 110: 107083, 2021.
Article in English | MEDLINE | ID: mdl-34098110

ABSTRACT

It has recently become possible to produce hepatocytes from human induced pluripotent stem cells (iPSC-heps), which may offer some advantages over primary human hepatocytes (Prim-heps) in the regulatory environment. The aim of this research was to assess similarities and differences between commercially available iPSC-heps and Prim-heps in preliminary assays of drug metabolism, hepatotoxicity, and drug transport. Hepatocytes were either cultured in collagen-coated 96-well plates (Prim-heps and 2d-iPSC-heps) or in ultra-low adhesion plates as spheroids (3d-iPSC-heps). 3d-iPSC-heps were used to enhance physiological cell-cell contacts, which is essential to maintain the phenotype of mature hepatocytes. Cytochrome P450 (CYP) 3A4, CYP1A2, and CYP2B6 activity levels were evaluated using fluorescent assays. Phase II metabolism was assessed by HPLC measurement of formation of glucuronides and sulfates of 4-methylumbelliferone, 1-naphthol, and estradiol. The toxicity of acetaminophen, amiodarone, aspirin, clozapine, tacrine, tamoxifen, and troglitazone was monitored using a luminescent cell viability assay. Canaliculi formation was monitored by following the fluorescence of 5,6-carboxy-2',7'-dichlorofluorescein diacetate. All culture models showed similar levels of basal CYP3A4, CYP1A2 and CYP2B6 activity. However, while Prim-heps showed a vigorous response to CYP inducing agents, 2d-iPSC-heps showed no response and 3d-iPSC-heps displayed an inconclusive response. 2d-iPSC-heps showed reduced, yet appreciable, glucuronide and sulfate formation compared to Prim-heps. All culture models showed similar activity in tests of hepatotoxicity, with Prim-heps generally being more sensitive. All models formed canaliculi capable of transporting carboxy-2',7'-dichlorofluorescein. The iPSC-heps appear to be useful for toxicity and transport studies, but metabolic activity is not optimum, and metabolism studies would benefit from a more mature model.


Subject(s)
Induced Pluripotent Stem Cells , Acetaminophen , Cell Survival , Hepatocytes , Humans
2.
Cancer Chemother Pharmacol ; 82(5): 795-802, 2018 11.
Article in English | MEDLINE | ID: mdl-30105461

ABSTRACT

PURPOSE: Hyperbilirubinemia has been observed in patients treated with tyrosine kinase inhibitor (TKI) drugs. Therefore, it would be beneficial to understand whether there is a relationship between inhibition of uridine-5'-diphosphate glucuronosyltransferase (UGT) 1A1 activity and observed bilirubin elevations in TKI drug-treated patients. UGT1A1 is responsible for the glucuronidation of bilirubin which leads to its elimination in the bile. METHODS: To examine this question, an in vitro glucuronidation assay was developed to determine the inhibitory effect of TKI drugs employing human liver microsomes (HLM) with varying UGT1A1 activity. Utilizing ß-estradiol as the UGT1A1 probe substrate, 20 TKI drugs were evaluated at concentrations that represent clinical plasma levels. Adverse event reports were searched to generate an empirical Bayes geometric mean (EGBM) score for clinical hyperbilirubinemia with the TKI drugs. RESULTS: Erlotinib, nilotinib, regorafenib, pazopanib, sorafenib and vemurafenib had IC50 values that were lower than their clinical steady-state Cmax concentrations. These TKI drugs had high incidences of hyperbilirubinemia and higher EBGM scores. The IC50 values and Cmax/IC50 ratios correlated well with EBGM scores for hyperbilirubinemia (P < 0.005). For the TKI drugs with higher incidence of hyperbilirubinemia in Gilbert syndrome patients, who have reduced UGT1A1 activity, six of eight had smaller ratios in the low UGT1A1 activity microsomes than the wild-type microsomes for drugs, indicating greater sensitivity to the drugs in this phenotype. CONCLUSIONS: These results suggest that in vitro UGT1A1 inhibition assays have the potential to predict clinical hyperbilirubinemia.


Subject(s)
Glucuronosyltransferase/antagonists & inhibitors , Hyperbilirubinemia/chemically induced , Microsomes, Liver/drug effects , Protein Kinase Inhibitors/adverse effects , Glucuronosyltransferase/genetics , Humans , Hyperbilirubinemia/enzymology , In Vitro Techniques , Inhibitory Concentration 50 , Microsomes, Liver/enzymology , Protein Kinase Inhibitors/therapeutic use
3.
Regul Toxicol Pharmacol ; 70(1): 182-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25010377

ABSTRACT

The clinical use of local anesthetic products to anesthetize mucous membranes has been associated with methemoglobinemia (MetHba), a serious condition in which the blood has reduced capacity to carry oxygen. An evaluation of spontaneous adverse event reporting of MetHba submitted to FDA through 2013 identified 375 reports associated with benzocaine and 16 reports associated with lidocaine. The current study was performed to determine the relative ability of benzocaine and lidocaine to produce methemoglobin (MetHb) in vitro. Incubation of 500µM benzocaine with whole human blood and pooled human liver S9 over 5h resulted in MetHb levels equaling 39.8±1.2% of the total hemoglobin. No MetHb formation was detected for 500µM lidocaine under the same conditions. Because liver S9 does not readily form lidocaine hydrolytic metabolites based on xylidine, a primary metabolic pathway, 500µM xylidine was directly incubated with whole blood and S9. Under these conditions MetHb levels of 4.4±0.4% were reached by 5h. Studies with recombinant cytochrome P450 revealed benzocaine to be extensively metabolized by CYP 1A2, with 2B6, 2C19, 2D6, and 2E1 also having activity. We conclude that benzocaine produces much more MetHb in in vitro systems than lidocaine or xylidine and that benzocaine should be more likely to cause MetHba in vivo as well.


Subject(s)
Anesthetics, Local/toxicity , Benzocaine/toxicity , Lidocaine/toxicity , Methemoglobinemia/chemically induced , Anesthetics, Local/metabolism , Aniline Compounds/metabolism , Benzocaine/metabolism , Cytochrome P-450 Enzyme System/metabolism , Humans , In Vitro Techniques , Lidocaine/metabolism , Liver/metabolism , Methemoglobin/metabolism
4.
Chem Res Toxicol ; 19(3): 376-81, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16544941

ABSTRACT

17-Dimethylaminoethylamino-17-demethoxygeldanamycin (DMAG) and 17-allylamino-17-demethoxygeldanamycin (17-AAG) are two derivatives of geldanamycin (GA) that are currently undergoing clinical evaluation as anticancer agents. These agents bind to heat shock protein 90 (hsp90), resulting in the destabilization of client proteins and inhibition of tumor growth. In a search for the mechanism of hepatotoxicity, which is a dose-limiting toxicity for these agents, we found that GA and its derivatives, 17-AAG and 17-DMAG, react chemically (i.e., nonenzymatically) with glutathione (GSH). A combination of liquid chromatography/electrospray ionization/mass spectrometry and nuclear magnetic resonance analyses were used to identify the product of this reaction as a GSH adduct in which the thiol group of GSH is substituted in the 19-position of the benzoquinone ring. The reaction proceeds rapidly with GA and 17-DMAG (half-lives of approximately 1.5 and 36 min, respectively) and less rapidly with 17-AAG and its major metabolite, 17-AG (half-lives of approximately 9.8 and 16.7 h). The reaction occurs at pH 7.0, 37 degrees C, and a physiological concentration of GSH, indicating that cellular GSH could play a role in modulating the cellular toxicity of these agents and therefore be a factor in their mechanism of differential toxicity. Moreover, reactions with thiol groups of critical cellular proteins could be important to the mechanism of toxicity with this class of anticancer agents.


Subject(s)
Antibiotics, Antineoplastic/chemistry , Glutathione/chemistry , Quinones/chemistry , Benzoquinones , Buffers , Chromatography, High Pressure Liquid , Drug Stability , HSP90 Heat-Shock Proteins/chemistry , Lactams, Macrocyclic , Magnetic Resonance Spectroscopy , Mass Spectrometry , Phosphates/chemistry , Sulfhydryl Compounds/chemistry
5.
Chem Res Toxicol ; 18(12): 1842-8, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16359174

ABSTRACT

Evidence has been presented suggesting that a reactive metabolite, 2-phenylpropenal (ATPAL), may be responsible for the toxicities observed during therapy with the antiepileptic drug felbamate (FBM). Formation of ATPAL from its unstable immediate precursor, 3-carbamoyl-2-phenylpropionaldedhyde (CBMA) requires the loss of the hydrogen atom at position 2 in the propane chain, and it has been postulated that substitution of this atom with fluorine would prevent the formation of ATPAL. On the basis of this hypothesis, 2-fluoro-2-phenyl-1,3-propanediol dicarbamate (F-FBM) was synthesized and is presently undergoing drug development. To test this hypothesis, we compared the metabolism by human liver postmitochondrial suspensions (S9) in vitro of selected FBM and postulated F-FBM metabolites leading to formation of CBMA or 3-carbamoyl-2-fluoro-2-phenyl-propionaldehyde (F-CBMA). All S9 incubations included GSH as a trapping agent for any reactive metabolites formed. Our results indicated that, in phosphate buffer, pH 7.4, at 37 degrees C, the half-life for 4-hydroxy-5-phenyltetrahydro-1,3-oxazin-2-one (CCMF) was 2.8 and 3.6 h in the presence or absence of GSH, respectively; compared to 4-hydroxy-5-fluoro-5-phenyl-tetrahydro-1,3-oxazin-2-one (F-CCMF) which lost only 2.5% or 4.9% over 24 h under the same conditions. When incubated with S9 in the presence of the cofactor, NAD+, 2-phenyl-1,3-propanediol monocarbamate (MCF) was oxidized to CCMF which was further oxidized to 3-carbamoyl-2-phenylpropionic acid (CPPA). 2-Fluoro-2-phenyl-1,3-propanediol monocarbamate (F-MCF) under similar conditions was stable, and no metabolites were observed. When CCMF was incubated with S9 in the presence of NAD+ cofactor, oxidation to CPPA and reduction to MCF were observed. In addition, a new atropic acid GSH adduct (ATPA-GSH) was identified by mass spectrometry. When F-CCMF was incubated under the same conditions as CCMF, both reduced and oxidized metabolites, F-MCF and 3-carbamoyl-2-fluoro-2-phenylpropionic acid (F-CPPA), respectively, were formed but at significantly lower rates, and no GSH conjugates were identified. Our results support the hypothesis that F-FBM and F-CCMF are not metabolized by S9 in vitro to the known reactive FBM metabolite, ATPAL.


Subject(s)
Aza Compounds/chemistry , Fluorine/chemistry , Mitochondria, Liver/metabolism , Propylene Glycols/chemistry , Propylene Glycols/metabolism , Aldehydes/chemistry , Anticonvulsants/chemistry , Aza Compounds/metabolism , Cells, Cultured , Felbamate , Fluorine/metabolism , Humans , Mass Spectrometry , Mitochondria, Liver/chemistry , NAD/chemistry , Oxazines , Oxidation-Reduction , Phenylcarbamates , Signal Transduction
6.
Chem Biol Interact ; 142(1-2): 43-55, 2002 Nov 10.
Article in English | MEDLINE | ID: mdl-12399154

ABSTRACT

The quantification and identification of xenobiotic reactive intermediates is difficult in the absence of highly radiolabeled drug. We have developed a method for identifying these intermediates by measuring the formation of adducts to intracellularly generated radiolabeled glutathione (GSH). Freshly isolated adherent rat and human hepatocytes were incubated overnight in methionine and cystine-free ('thio-free') medium. They were then exposed to 100 microM methionine and 10 microCi 35S-labeled methionine in otherwise thio-free medium to replete cellular GSH pools with intracellularly generated 35S-labeled GSH. After 3 h, acetaminophen was added as a test compound and the cells were incubated for an additional 24 h. Intracellular GSH and its specific activity were quantified after reaction with monobromobimane followed by HPLC analysis with fluorescence and radiochemical detection. Radiolabeled GSH was detectable at 3 h and maintained high specific activity and physiological concentrations for up to 24 h. Incubation medium from acetaminophen treated and nontreated hepatocytes were analyzed for radiolabeled peaks by HPLC using radiochemical detection. Radiolabeled peaks not present in nontreated hepatocytes were identified as acetaminophen GSH adducts by LC-MS. Formation of acetaminophen 35S-GSH adducts by rat hepatocytes containing endogenously synthesized 35S-GSH was increased with acetaminophen concentrations ranging from 500 to 2 mM.


Subject(s)
Acetaminophen/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Glutathione/metabolism , Liver/metabolism , Methionine/metabolism , Acetaminophen/pharmacokinetics , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Carbon Radioisotopes , Chromatography, Liquid , Cystine/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Mass Spectrometry , Rats , Sulfur Radioisotopes
SELECTION OF CITATIONS
SEARCH DETAIL
...