Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
J Virol ; 94(11)2020 05 18.
Article in English | MEDLINE | ID: mdl-32213609

ABSTRACT

We describe the discovery of an archaeal virus, one that infects archaea, tentatively named Thermoproteus spherical piliferous virus 1 (TSPV1), which was purified from a Thermoproteales host isolated from a hot spring in Yellowstone National Park (USA). TSPV1 packages an 18.65-kb linear double-stranded DNA (dsDNA) genome with 31 open reading frames (ORFs), whose predicted gene products show little homology to proteins with known functions. A comparison of virus particle morphologies and gene content demonstrates that TSPV1 is a new member of the Globuloviridae family of archaeal viruses. However, unlike other Globuloviridae members, TSPV1 has numerous highly unusual filaments decorating its surface, which can extend hundreds of nanometers from the virion. To our knowledge, similar filaments have not been observed in any other archaeal virus. The filaments are remarkably stable, remaining intact across a broad range of temperature and pH values, and they are resistant to chemical denaturation and proteolysis. A major component of the filaments is a glycosylated 35-kDa TSPV1 protein (TSPV1 GP24). The filament protein lacks detectable homology to structurally or functionally characterized proteins. We propose, given the low host cell densities of hot spring environments, that the TSPV1 filaments serve to increase the probability of virus attachment and entry into host cells.IMPORTANCE High-temperature environments have proven to be an important source for the discovery of new archaeal viruses with unusual particle morphologies and gene content. Our isolation of Thermoproteus spherical piliferous virus 1 (TSPV1), with numerous filaments extending from the virion surface, expands our understanding of viral diversity and provides new insight into viral replication in high-temperature environments.


Subject(s)
Archaeal Viruses , DNA Viruses , DNA, Viral , Thermoproteus/virology , Viral Proteins , Archaeal Viruses/classification , Archaeal Viruses/genetics , Archaeal Viruses/metabolism , DNA Viruses/classification , DNA Viruses/genetics , DNA Viruses/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , Thermoproteus/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
3.
Structure ; 27(11): 1634-1646.e3, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31587916

ABSTRACT

Sulfolobus turreted icosahedral virus (STIV) is a model archaeal virus and member of the PRD1-adenovirus lineage. Although STIV employs pyramidal lysis structures to exit the host, knowledge of the viral entry process is lacking. We therefore initiated studies on STIV attachment and entry. Negative stain and cryoelectron micrographs showed virion attachment to pili-like structures emanating from the Sulfolobus host. Tomographic reconstruction and sub-tomogram averaging revealed pili recognition by the STIV C381 turret protein. Specifically, the triple jelly roll structure of C381 determined by X-ray crystallography shows that pilus recognition is mediated by conserved surface residues in the second and third domains. In addition, the STIV petal protein (C557), when present, occludes the pili binding site, suggesting that it functions as a maturation protein. Combined, these results demonstrate a role for the namesake STIV turrets in initial cellular attachment and provide the first molecular model for viral attachment in the archaeal domain of life.


Subject(s)
Archaeal Viruses/chemistry , Viral Proteins/chemistry , Virus Attachment , Archaeal Viruses/pathogenicity , Archaeal Viruses/ultrastructure , Protein Domains , Sulfolobus/virology , Viral Proteins/metabolism
4.
Curr Opin Virol ; 36: 74-83, 2019 06.
Article in English | MEDLINE | ID: mdl-31238245

ABSTRACT

Archaeal viruses exhibit diverse morphologies whose structures are just beginning to be explored at high-resolution. In this review, we update recent findings on archaeal structural proteins and virion architectures and place them in the biological context in which these viruses replicate. We conclude that many of the unusual structural features and dynamics of archaeal viruses aid their replication and survival in the chemically harsh environments, in which they replicate. Furthermore, we should expect to find more novel features from examining the high-resolution structures of additional archaeal viruses.


Subject(s)
Archaea/virology , Archaeal Viruses/chemistry , Viral Structures/chemistry , Adaptation, Physiological , Archaeal Viruses/genetics , Archaeal Viruses/physiology , DNA, Viral , Genome, Viral , Hot Springs/virology , Sequence Analysis, DNA , Virion/chemistry , Virion/genetics , Virus Replication
5.
Nat Commun ; 8(1): 1914, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29203770

ABSTRACT

TFIIS-like transcript cleavage factors enhance the processivity and fidelity of archaeal and eukaryotic RNA polymerases. Sulfolobus solfataricus TFS1 functions as a bona fide cleavage factor, while the paralogous TFS4 evolved into a potent RNA polymerase inhibitor. TFS4 destabilises the TBP-TFB-RNAP pre-initiation complex and inhibits transcription initiation and elongation. All inhibitory activities are dependent on three lysine residues at the tip of the C-terminal zinc ribbon of TFS4; the inhibition likely involves an allosteric component and is mitigated by the basal transcription factor TFEα/ß. A chimeric variant of yeast TFIIS and TFS4 inhibits RNAPII transcription, suggesting that the molecular basis of inhibition is conserved between archaea and eukaryotes. TFS4 expression in S. solfataricus is induced in response to infection with the S ulfolobus turreted icosahedral virus. Our results reveal a compelling functional diversification of cleavage factors in archaea, and provide novel insights into transcription inhibition in the context of the host-virus relationship.


Subject(s)
RNA Polymerase II/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Sulfolobus solfataricus/metabolism , Transcription Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/metabolism , Carrier Proteins/metabolism , Intracellular Signaling Peptides and Proteins , RNA Polymerase II/metabolism , Transcription Factor TFIIB/metabolism , Transcription Factors, TFII/metabolism , Transcription, Genetic
6.
Environ Sci Pollut Res Int ; 23(3): 1986-97, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25994266

ABSTRACT

Growing awareness of polychlorinated biphenyls (PCBs) in legacy caulk and other construction materials of schools has created a need for information on best practices to control human exposures and comply with applicable regulations. A concise review of approaches and techniques for management of building-related PCBs is the focus of this paper. Engineering and administrative controls that block pathways of PCB transport, dilute concentrations of PCBs in indoor air or other exposure media, or establish uses of building space that mitigate exposure can be effective initial responses to identification of PCBs in a building. Mitigation measures also provide time for school officials to plan a longer-term remediation strategy and to secure the necessary resources. These longer-term strategies typically involve removal of caulk or other primary sources of PCBs as well as nearby masonry or other materials contaminated with PCBs by the primary sources. The costs of managing PCB-containing building materials from assessment through ultimate disposal can be substantial. Optimizing the efficacy and cost-effectiveness of remediation programs requires aligning a thorough understanding of sources and exposure pathways with the most appropriate mitigation and abatement methods.


Subject(s)
Air Pollution, Indoor/analysis , Air Pollution, Indoor/prevention & control , Construction Materials/analysis , Polychlorinated Biphenyls/chemistry , Schools , Environmental Exposure , Humans , Polychlorinated Biphenyls/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...