Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters










Publication year range
2.
J Biol Chem ; 300(3): 105731, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336295

ABSTRACT

The endoribonuclease RNase P is responsible for tRNA 5' maturation in all domains of life. A unique feature of RNase P is the variety of enzyme architectures, ranging from dual- to multi-subunit ribonucleoprotein forms with catalytic RNA subunits to protein-only enzymes, the latter occurring as single- or multi-subunit forms or homo-oligomeric assemblies. The protein-only enzymes evolved twice: a eukaryal protein-only RNase P termed PRORP and a bacterial/archaeal variant termed homolog of Aquifex RNase P (HARP); the latter replaced the RNA-based enzyme in a small group of thermophilic bacteria but otherwise coexists with the ribonucleoprotein enzyme in a few other bacteria as well as in those archaea that also encode a HARP. Here we summarize the history of the discovery of protein-only RNase P enzymes and review the state of knowledge on structure and function of bacterial HARPs and eukaryal PRORPs, including human mitochondrial RNase P as a paradigm of multi-subunit PRORPs. We also describe the phylogenetic distribution and evolution of PRORPs, as well as possible reasons for the spread of PRORPs in the eukaryal tree and for the recruitment of two additional protein subunits to metazoan mitochondrial PRORP. We outline potential applications of PRORPs in plant biotechnology and address diseases associated with mutations in human mitochondrial RNase P genes. Finally, we consider possible causes underlying the displacement of the ancient RNA enzyme by a protein-only enzyme in a small group of bacteria.


Subject(s)
Evolution, Molecular , Ribonuclease P , Animals , Humans , Archaea/enzymology , Archaea/genetics , Bacteria/enzymology , Bacteria/genetics , Phylogeny , Ribonuclease P/chemistry , Ribonuclease P/classification , Ribonuclease P/genetics , Ribonuclease P/metabolism , RNA, Catalytic
3.
Nucleic Acids Res ; 52(3): 1404-1419, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38050972

ABSTRACT

Even though Bacillus subtilis is one of the most studied organisms, no function has been identified for about 20% of its proteins. Among these unknown proteins are several RNA- and ribosome-binding proteins suggesting that they exert functions in cellular information processing. In this work, we have investigated the RNA-binding protein YlxR. This protein is widely conserved in bacteria and strongly constitutively expressed in B. subtilis suggesting an important function. We have identified the RNA subunit of the essential RNase P as the binding partner of YlxR. The main activity of RNase P is the processing of 5' ends of pre-tRNAs. In vitro processing assays demonstrated that the presence of YlxR results in reduced RNase P activity. Chemical cross-linking studies followed by in silico docking analysis and experiments with site-directed mutant proteins suggest that YlxR binds to the region of the RNase P RNA that is important for binding and cleavage of the pre-tRNA substrate. We conclude that the YlxR protein is a novel interaction partner of the RNA subunit of RNase P that serves to finetune RNase P activity to ensure appropriate amounts of mature tRNAs for translation. We rename the YlxR protein RnpM for RNase P modulator.


Subject(s)
Bacillus subtilis , Bacterial Proteins , RNA-Binding Proteins , Ribonuclease P , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Endoribonucleases/metabolism , Ribonuclease P/metabolism , RNA Precursors/metabolism , RNA, Bacterial/metabolism , RNA, Transfer/metabolism , RNA-Binding Proteins/metabolism
4.
Nucleic Acids Res ; 51(19): 10536-10550, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37779095

ABSTRACT

RNase P is the endonuclease responsible for the 5' processing of precursor tRNAs (pre-tRNAs). Unlike the single-subunit protein-only RNase P (PRORP) found in plants or protists, human mitochondrial RNase P is a multi-enzyme assembly that in addition to the homologous PRORP subunit comprises a methyltransferase (TRMT10C) and a dehydrogenase (SDR5C1) subunit; these proteins, but not their enzymatic activities, are required for efficient pre-tRNA cleavage. Here we report a kinetic analysis of the cleavage reaction by human PRORP and its interplay with TRMT10C-SDR5C1 including 12 different mitochondrial pre-tRNAs. Surprisingly, we found that PRORP alone binds pre-tRNAs with nanomolar affinity and can even cleave some of them at reduced efficiency without the other subunits. Thus, the ancient binding mode, involving the tRNA elbow and PRORP's PPR domain, appears basically retained by human PRORP, and its metallonuclease domain is in principle correctly folded and functional. Our findings support a model according to which the main function of TRMT10C-SDR5C1 is to direct PRORP's nuclease domain to the cleavage site, thereby increasing the rate and accuracy of cleavage. This functional dependence of human PRORP on an extra tRNA-binding protein complex likely reflects an evolutionary adaptation to the erosion of canonical structural features in mitochondrial tRNAs.


Subject(s)
RNA, Transfer , Ribonuclease P , Humans , Ribonuclease P/metabolism , Kinetics , RNA, Transfer/metabolism , RNA Precursors/metabolism , Endonucleases/metabolism
6.
RNA ; 29(10): 1481-1499, 2023 10.
Article in English | MEDLINE | ID: mdl-37369528

ABSTRACT

Noncoding 6S RNAs regulate transcription by binding to the active site of bacterial RNA polymerase holoenzymes. Processing and decay of 6S-1 and 6S-2 RNA were investigated in Bacillus subtilis by northern blot and RNA-seq analyses using different RNase knockout strains, as well as by in vitro processing assays. For both 6S RNA paralogs, we identified a key-but mechanistically different-role of RNase J1. RNase J1 catalyzes 5'-end maturation of 6S-1 RNA, yet relatively inefficient and possibly via the enzyme's "sliding endonuclease" activity. 5'-end maturation has no detectable effect on 6S-1 RNA function, but rather regulates its decay: The generated 5'-monophosphate on matured 6S-1 RNA propels endonucleolytic cleavage in its apical loop region. The major 6S-2 RNA degradation pathway is initiated by endonucleolytic cleavage in the 5'-central bubble to trigger 5'-to-3'-exoribonucleolytic degradation of the downstream fragment by RNase J1. The four 3'-exonucleases of B. subtilis-RNase R, PNPase, YhaM, and particularly RNase PH-are involved in 3'-end trimming of both 6S RNAs, degradation of 6S-1 RNA fragments, and decay of abortive transcripts (so-called product RNAs, ∼14 nt in length) synthesized on 6S-1 RNA during outgrowth from stationary phase. In the case of the growth-retarded RNase Y deletion strain, we were unable to infer a specific role of RNase Y in 6S RNA decay. Yet, a participation of RNase Y in 6S RNA decay still remains possible, as evidence for such a function may have been obscured by overlapping substrate specificities of RNase Y, RNase J1, and RNase J2.


Subject(s)
Bacillus subtilis , RNA, Bacterial , RNA, Bacterial/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , RNA, Untranslated/metabolism , Ribonuclease, Pancreatic/metabolism , RNA Stability/genetics
7.
Nucleic Acids Res ; 51(11): e63, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37114986

ABSTRACT

Structural analysis of RNA is an important and versatile tool to investigate the function of this type of molecules in the cell as well as in vitro. Several robust and reliable procedures are available, relying on chemical modification inducing RT stops or nucleotide misincorporations during reverse transcription. Others are based on cleavage reactions and RT stop signals. However, these methods address only one side of the RT stop or misincorporation position. Here, we describe Led-Seq, a new approach based on lead-induced cleavage of unpaired RNA positions, where both resulting cleavage products are investigated. The RNA fragments carrying 2', 3'-cyclic phosphate or 5'-OH ends are selectively ligated to oligonucleotide adapters by specific RNA ligases. In a deep sequencing analysis, the cleavage sites are identified as ligation positions, avoiding possible false positive signals based on premature RT stops. With a benchmark set of transcripts in Escherichia coli, we show that Led-Seq is an improved and reliable approach based on metal ion-induced phosphodiester hydrolysis to investigate RNA structures in vivo.


Subject(s)
Nucleic Acid Conformation , RNA , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrolysis , Metals , Oligonucleotides/chemistry , RNA/chemistry , Sequence Analysis, RNA/methods
8.
RNA ; 29(3): 376-391, 2023 03.
Article in English | MEDLINE | ID: mdl-36604113

ABSTRACT

A small group of bacteria encode two types of RNase P, the classical ribonucleoprotein (RNP) RNase P as well as the protein-only RNase P HARP (homolog of Aquifex RNase P). We characterized the dual RNase P activities of five bacteria that belong to three different phyla. All five bacterial species encode functional RNA (gene rnpB) and protein (gene rnpA) subunits of RNP RNase P, but only the HARP of the thermophile Thermodesulfatator indicus (phylum Thermodesulfobacteria) was found to have robust tRNA 5'-end maturation activity in vitro and in vivo in an Escherichia coli RNase P depletion strain. These findings suggest that both types of RNase P are able to contribute to the essential tRNA 5'-end maturation activity in T. indicus, thus resembling the predicted evolutionary transition state in the progenitor of the Aquificaceae before the loss of rnpA and rnpB genes in this family of bacteria. Remarkably, T. indicus RNase P RNA is transcribed with a P12 expansion segment that is posttranscriptionally excised in vivo, such that the major fraction of the RNA is fragmented and thereby truncated by ∼70 nt in the native T. indicus host as well as in the E. coli complementation strain. Replacing the native P12 element of T. indicus RNase P RNA with the short P12 helix of Thermotoga maritima RNase P RNA abolished fragmentation, but simultaneously impaired complementation efficiency in E. coli cells, suggesting that intracellular fragmentation and truncation of T. indicus RNase P RNA may be beneficial to RNA folding and/or enzymatic activity.


Subject(s)
Escherichia coli , Ribonuclease P , Ribonuclease P/metabolism , Escherichia coli/metabolism , Bacteria/genetics , RNA, Bacterial/metabolism , RNA, Transfer/genetics
9.
Int J Mol Sci ; 23(7)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35409013

ABSTRACT

6S RNA, a small non-coding RNA present in almost all bacteria, inhibits transcription via direct binding to RNA polymerase holoenzymes. The mechanism of 6S RNA action was investigated to a large extent in E. coli, however, lack of 6S RNA (ΔssrS) was demonstrated to be unfavorable but not essential for cell survival under various growth conditions. In the present study, we revealed, for the first time, a lethal phenotype of the ΔssrS strain in the presence of high concentrations of H2O2. This phenotype was rescued by complementation of the ssrS gene on a plasmid. We performed comparative qRT-PCR analyses on an enlarged set of mRNAs of genes associated with the oxidative stress response, allowing us to identify four genes known to be involved in this pathway (soxS, ahpC, sodA and tpx) that had decreased mRNA levels in the ΔssrS strain. Finally, we performed comparative proteomic analyses of the wild-type and ΔssrS strains, confirming that ΔssrS bacteria have reduced levels of the proteins AhpC and Tpx involved in H2O2 reduction. Our findings substantiate the crucial role of the riboregulator 6S RNA for bacterial coping with extreme stresses.


Subject(s)
Escherichia coli , Gene Expression Regulation, Bacterial , Bacteria/metabolism , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Oxidative Stress/genetics , Proteomics , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated , Transcription, Genetic
10.
Viruses ; 14(3)2022 03 03.
Article in English | MEDLINE | ID: mdl-35336926

ABSTRACT

Rocaglates are potent broad-spectrum antiviral compounds with a promising safety profile. They inhibit viral protein synthesis for different RNA viruses by clamping the 5'-UTRs of mRNAs onto the surface of the RNA helicase eIF4A. Apart from the natural rocaglate silvestrol, synthetic rocaglates like zotatifin or CR-1-31-B have been developed. Here, we compared the effects of rocaglates on viral 5'-UTR-mediated reporter gene expression and binding to an eIF4A-polypurine complex. Furthermore, we analyzed the cytotoxicity of rocaglates on several human immune cells and compared their antiviral activities in coronavirus-infected cells. Finally, the potential for developing viral resistance was evaluated by passaging human coronavirus 229E (HCoV-229E) in the presence of increasing concentrations of rocaglates in MRC-5 cells. Importantly, no decrease in rocaglate-sensitivity was observed, suggesting that virus escape mutants are unlikely to emerge if the host factor eIF4A is targeted. In summary, all three rocaglates are promising antivirals with differences in cytotoxicity against human immune cells, RNA-clamping efficiency, and antiviral activity. In detail, zotatifin showed reduced RNA-clamping efficiency and antiviral activity compared to silvestrol and CR-1-31-B, but was less cytotoxic for immune cells. Our results underline the potential of rocaglates as broad-spectrum antivirals with no indications for the emergence of escape mutations in HCoV-229E.


Subject(s)
Antineoplastic Agents , Coronavirus , 5' Untranslated Regions , Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Constriction , Humans
11.
Noncoding RNA ; 8(1)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35202093

ABSTRACT

Here we investigated the refolding of Bacillus subtilis 6S-1 RNA and its release from σA-RNA polymerase (σA-RNAP) in vitro using truncated and mutated 6S-1 RNA variants. Truncated 6S-1 RNAs, only consisting of the central bubble (CB) flanked by two short helical arms, can still traverse the mechanistic 6S RNA cycle in vitro despite ~10-fold reduced σA-RNAP affinity. This indicates that the RNA's extended helical arms including the '-35'-like region are not required for basic 6S-1 RNA functionality. The role of the 'central bubble collapse helix' (CBCH) in pRNA-induced refolding and release of 6S-1 RNA from σA-RNAP was studied by stabilizing mutations. This also revealed base identities in the 5'-part of the CB (5'-CB), upstream of the pRNA transcription start site (nt 40), that impact ground state binding of 6S-1 RNA to σA-RNAP. Stabilization of the CBCH by the C44/45 double mutation shifted the pRNA length pattern to shorter pRNAs and, combined with a weakened P2 helix, resulted in more effective release from RNAP. We conclude that formation of the CBCH supports pRNA-induced 6S-1 RNA refolding and release. Our mutational analysis also unveiled that formation of a second short hairpin in the 3'-CB is detrimental to 6S-1 RNA release. Furthermore, an LNA mimic of a pRNA as short as 6 nt, when annealed to 6S-1 RNA, retarded the RNA's gel mobility and interfered with σA-RNAP binding. This effect incrementally increased with pLNA 7- and 8-mers, suggesting that restricted conformational flexibility introduced into the 5'-CB by base pairing with pRNAs prevents 6S-1 RNA from adopting an elongated shape. Accordingly, atomic force microscopy of free 6S-1 RNA versus 6S-1:pLNA 8- and 14-mer complexes revealed that 6S-1:pRNA hybrid structures, on average, adopt a more compact structure than 6S-1 RNA alone. Overall, our findings also illustrate that the wild-type 6S-1 RNA sequence and structure ensures an optimal balance of the different functional aspects involved in the mechanistic cycle of 6S-1 RNA.

12.
PLoS Pathog ; 17(10): e1010002, 2021 10.
Article in English | MEDLINE | ID: mdl-34699554

ABSTRACT

Transcription of non-segmented negative sense (NNS) RNA viruses follows a stop-start mechanism and is thought to be initiated at the genome's very 3'-end. The synthesis of short abortive leader transcripts (leaderRNAs) has been linked to transcription initiation for some NNS viruses. Here, we identified the synthesis of abortive leaderRNAs (as well as trailer RNAs) that are specifically initiated opposite to (anti)genome nt 2; leaderRNAs are predominantly terminated in the region of nt ~ 60-80. LeaderRNA synthesis requires hexamer phasing in the 3'-leader promoter. We determined a steady-state NP mRNA:leaderRNA ratio of ~10 to 30-fold at 48 h after Ebola virus (EBOV) infection, and this ratio was higher (70 to 190-fold) for minigenome-transfected cells. LeaderRNA initiation at nt 2 and the range of termination sites were not affected by structure and length variation between promoter elements 1 and 2, nor the presence or absence of VP30. Synthesis of leaderRNA is suppressed in the presence of VP30 and termination of leaderRNA is not mediated by cryptic gene end (GE) signals in the 3'-leader promoter. We further found different genomic 3'-end nucleotide requirements for transcription versus replication, suggesting that promoter recognition is different in the replication and transcription mode of the EBOV polymerase. We further provide evidence arguing against a potential role of EBOV leaderRNAs as effector molecules in innate immunity. Taken together, our findings are consistent with a model according to which leaderRNAs are abortive replicative RNAs whose synthesis is not linked to transcription initiation. Rather, replication and transcription complexes are proposed to independently initiate RNA synthesis at separate sites in the 3'-leader promoter, i.e., at the second nucleotide of the genome 3'-end and at the more internally positioned transcription start site preceding the first gene, respectively, as reported for Vesicular stomatitis virus.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Ebolavirus/genetics , RNA, Viral/genetics , Transcription, Genetic/genetics , Ebolavirus/enzymology
13.
J Microbiol Methods ; 190: 106324, 2021 11.
Article in English | MEDLINE | ID: mdl-34506811

ABSTRACT

The regulatory 6S-1 and 6S-2 RNAs of B. subtilis bind to the housekeeping RNA polymerase holoenzyme (σA-RNAP) with submicromolar affinity. We observed copurification of endogenous 6S RNAs from a published B. subtilis strain expressing a His-tagged RNAP. Such 6S RNA contaminations in σA-RNAP preparations reduce the fraction of enzymes that are accessible for binding to DNA promoters. In addition, this leads to background RNA synthesis by σA-RNAP utilizing copurified 6S RNA as template for the synthesis of short abortive transcripts termed product RNAs (pRNAs). To avoid this problem we constructed a B. subtilis strain expressing His-tagged RNAP but carrying deletions of the two 6S RNA genes. The His-tagged, 6S RNA-free σA-RNAP holoenzyme can be prepared with sufficient purity and activity by a single affinity step. We also report expression and separate purification of B. subtilis σA that can be added to the His-tagged RNAP to maximize the amount of holoenzyme and, by inference, in vitro transcription activity.


Subject(s)
Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/isolation & purification , Chromatography, Affinity/methods , DNA-Directed RNA Polymerases/isolation & purification , Sigma Factor/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA, Bacterial , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , RNA, Bacterial/isolation & purification , RNA, Untranslated/isolation & purification , Sigma Factor/genetics , Sigma Factor/metabolism
14.
BMC Genom Data ; 22(1): 29, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34479493

ABSTRACT

BACKGROUND: 6S RNA is a regulator of cellular transcription that tunes the metabolism of cells. This small non-coding RNA is found in nearly all bacteria and among the most abundant transcripts. Lactic acid bacteria (LAB) constitute a group of microorganisms with strong biotechnological relevance, often exploited as starter cultures for industrial products through fermentation. Some strains are used as probiotics while others represent potential pathogens. Occasional reports of 6S RNA within this group already indicate striking metabolic implications. A conceivable idea is that LAB with 6S RNA defects may metabolize nutrients faster, as inferred from studies of Echerichia coli. This may accelerate fermentation processes with the potential to reduce production costs. Similarly, elevated levels of secondary metabolites might be produced. Evidence for this possibility comes from preliminary findings regarding the production of surfactin in Bacillus subtilis, which has functions similar to those of bacteriocins. The prerequisite for its potential biotechnological utility is a general characterization of 6S RNA in LAB. RESULTS: We provide a genomic annotation of 6S RNA throughout the Lactobacillales order. It laid the foundation for a bioinformatic characterization of common 6S RNA features. This covers secondary structures, synteny, phylogeny, and product RNA start sites. The canonical 6S RNA structure is formed by a central bulge flanked by helical arms and a template site for product RNA synthesis. 6S RNA exhibits strong syntenic conservation. It is usually flanked by the replication-associated recombination protein A and the universal stress protein A. A catabolite responsive element was identified in over a third of all 6S RNA genes. It is known to modulate gene expression based on the available carbon sources. The presence of antisense transcripts could not be verified as a general trait of LAB 6S RNAs. CONCLUSIONS: Despite a large number of species and the heterogeneity of LAB, the stress regulator 6S RNA is well-conserved both from a structural as well as a syntenic perspective. This is the first approach to describe 6S RNAs and short 6S RNA-derived transcripts beyond a single species, spanning a large taxonomic group covering multiple families. It yields universal insights into this regulator and complements the findings derived from other bacterial model organisms.


Subject(s)
Gene Expression Regulation, Bacterial , Lactobacillales/genetics , RNA, Bacterial/genetics , RNA, Untranslated/genetics , Bacillus subtilis/genetics , Conserved Sequence/genetics , Humans , Synteny/genetics
15.
RNA ; 27(10): 1204-1219, 2021 10.
Article in English | MEDLINE | ID: mdl-34266994

ABSTRACT

In most bacterial type A RNase P RNAs (P RNAs), two major loop-helix tertiary contacts (L8-P4 and L18-P8) help to orient the two independently folding S- and C-domains for concerted recognition of precursor tRNA substrates. Here, we analyze the effects of mutations in these tertiary contacts in P RNAs from three different species: (i) the psychrophilic bacterium Pseudoalteromonas translucida (Ptr), (ii) the mesophilic radiation-resistant bacterium Deinococcus radiodurans (Dra), and (iii) the thermophilic bacterium Thermus thermophilus (Tth). We show by UV melting experiments that simultaneous disruption of these two interdomain contacts has a stabilizing effect on all three P RNAs. This can be inferred from reduced RNA unfolding at lower temperatures and a more concerted unfolding at higher temperatures. Thus, when the two domains tightly interact via the tertiary contacts, one domain facilitates structural transitions in the other. P RNA mutants with disrupted interdomain contacts showed severe kinetic defects that were most pronounced upon simultaneous disruption of the L8-P4 and L18-P8 contacts. At 37°C, the mildest effects were observed for the thermostable Tth RNA. A third interdomain contact, L9-P1, makes only a minor contribution to P RNA tertiary folding. Furthermore, D. radiodurans RNase P RNA forms an additional pseudoknot structure between the P9 and P12 of its S-domain. This interaction was found to be particularly crucial for RNase P holoenzyme activity at near-physiological Mg2+ concentrations (2 mM). We further analyzed an exceptionally stable folding trap of the G,C-rich Tth P RNA.


Subject(s)
Deinococcus/genetics , Pseudoalteromonas/genetics , RNA, Bacterial/genetics , RNA, Transfer/genetics , Ribonuclease P/genetics , Thermus thermophilus/genetics , Base Pairing , Base Sequence , Deinococcus/metabolism , Gene Expression Regulation, Bacterial , Kinetics , Mutation , Pseudoalteromonas/metabolism , RNA 3' End Processing , RNA Folding , RNA Stability , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Ribonuclease P/metabolism , Temperature , Thermodynamics , Thermus thermophilus/metabolism
16.
Elife ; 102021 06 28.
Article in English | MEDLINE | ID: mdl-34180399

ABSTRACT

Endonucleolytic removal of 5'-leader sequences from tRNA precursor transcripts (pre-tRNAs) by ribonuclease P (RNase P) is essential for protein synthesis. Beyond RNA-based RNase P enzymes, protein-only versions of the enzyme exert this function in various eukarya (there termed PRORPs) and in some bacteria (Aquifex aeolicus and close relatives); both enzyme types belong to distinct subgroups of the PIN domain metallonuclease superfamily. Homologs of Aquifex RNase P (HARPs) are also expressed in some other bacteria and many archaea, where they coexist with RNA-based RNase P and do not represent the main RNase P activity. Here, we solved the structure of the bacterial HARP from Halorhodospira halophila by cryo-electron microscopy, revealing a novel screw-like dodecameric assembly. Biochemical experiments demonstrate that oligomerization is required for RNase P activity of HARPs. We propose that the tRNA substrate binds to an extended spike-helix (SH) domain that protrudes from the screw-like assembly to position the 5'-end in close proximity to the active site of the neighboring dimer. The structure suggests that eukaryotic PRORPs and prokaryotic HARPs recognize the same structural elements of pre-tRNAs (tRNA elbow region and cleavage site). Our analysis thus delivers the structural and mechanistic basis for pre-tRNA processing by the prokaryotic HARP system.


Subject(s)
Halorhodospira halophila/genetics , Ribonuclease P/genetics , Archaea/genetics , Archaea/metabolism , Bacteria/genetics , Bacteria/metabolism , Cryoelectron Microscopy , Halorhodospira halophila/metabolism , Ribonuclease P/metabolism
17.
Antimicrob Agents Chemother ; 65(8): e0030021, 2021 07 16.
Article in English | MEDLINE | ID: mdl-33972249

ABSTRACT

RNase P is an essential enzyme responsible for tRNA 5'-end maturation. In most bacteria, the enzyme is a ribonucleoprotein consisting of a catalytic RNA subunit and a small protein cofactor termed RnpA. Several studies have reported small-molecule inhibitors directed against bacterial RNase P that were identified by high-throughput screenings. Using the bacterial RNase P enzymes from Thermotoga maritima, Bacillus subtilis, and Staphylococcus aureus as model systems, we found that such compounds, including RNPA2000 (and its derivatives), iriginol hexaacetate, and purpurin, induce the formation of insoluble aggregates of RnpA rather than acting as specific inhibitors. In the case of RNPA2000, aggregation was induced by Mg2+ ions. These findings were deduced from solubility analyses by microscopy and high-performance liquid chromatography (HPLC), RnpA-inhibitor co-pulldown experiments, detergent addition, and RnpA titrations in enzyme activity assays. Finally, we used a B. subtilis RNase P depletion strain, whose lethal phenotype could be rescued by a protein-only RNase P of plant origin, for inhibition zone analyses on agar plates. These cell-based experiments argued against RNase P-specific inhibition of bacterial growth by RNPA2000. We were also unable to confirm the previously reported nonspecific RNase activity of S. aureus RnpA itself. Our results indicate that high-throughput screenings searching for bacterial RNase P inhibitors are prone to the identification of "false positives" that are also termed pan-assay interference compounds (PAINS).


Subject(s)
Ribonuclease P , Staphylococcal Infections , Bacillus subtilis/metabolism , High-Throughput Screening Assays , Humans , RNA, Bacterial , Ribonuclease P/metabolism , Staphylococcus aureus/genetics
18.
Microorganisms ; 9(3)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807988

ABSTRACT

The increase in pandemics caused by RNA viruses of zoonotic origin highlights the urgent need for broad-spectrum antivirals against novel and re-emerging RNA viruses. Broad-spectrum antivirals could be deployed as first-line interventions during an outbreak while virus-specific drugs and vaccines are developed and rolled out. Viruses depend on the host's protein synthesis machinery for replication. Several natural compounds that target the cellular DEAD-box RNA helicase eIF4A, a key component of the eukaryotic translation initiation complex eIF4F, have emerged as potential broad-spectrum antivirals. Rocaglates, a group of flavaglines of plant origin that clamp mRNAs with highly structured 5' untranslated regions (5'UTRs) onto the surface of eIF4A through specific stacking interactions, exhibit the largest selectivity and potential therapeutic indices among all known eIF4A inhibitors. Their unique mechanism of action limits the inhibitory effect of rocaglates to the translation of eIF4A-dependent viral mRNAs and a minor fraction of host mRNAs exhibiting stable RNA secondary structures and/or polypurine sequence stretches in their 5'UTRs, resulting in minimal potential toxic side effects. Maintaining a favorable safety profile while inducing efficient inhibition of a broad spectrum of RNA viruses makes rocaglates into primary candidates for further development as pan-antiviral therapeutics.

19.
Methods Mol Biol ; 2300: 41-58, 2021.
Article in English | MEDLINE | ID: mdl-33792870

ABSTRACT

Successful detection of very small RNAs (tiny RNAs, ~8-15 nt in length) by northern blotting depends on tailored protocols with respect to transfer and immobilization on membranes as well as design of sensitive detection probes. For RNA crosslinking to positively charged membranes, we compared UV light with chemical RNA crosslinking by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), using either denaturing or native polyacrylamide gels. We show that northern blot detection of tiny RNAs with 5'-digoxigenin-labeled DNA/LNA mixmer probes is a highly sensitive and specific method and, in our hands, more sensitive than using a corresponding DNA/LNA mixmer probe with a 5'-32P-end-label. Furthermore, we provide a robust protocol for northern blot analysis of noncoding RNAs of intermediate size (~50-400 nt).


Subject(s)
Cross-Linking Reagents/chemistry , DNA Probes/metabolism , Ethyldimethylaminopropyl Carbodiimide/chemistry , RNA/analysis , Blotting, Northern , DNA Probes/chemistry , Denaturing Gradient Gel Electrophoresis , Digoxigenin/chemistry , Native Polyacrylamide Gel Electrophoresis , RNA/chemistry
20.
Antiviral Res ; 186: 105012, 2021 02.
Article in English | MEDLINE | ID: mdl-33422611

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, a severe respiratory disease with varying clinical presentations and outcomes, and responsible for a major pandemic that started in early 2020. With no vaccines or effective antiviral treatments available, the quest for novel therapeutic solutions remains an urgent priority. Rocaglates, a class of plant-derived cyclopenta[b]benzofurans, exhibit broad-spectrum antiviral activity against multiple RNA viruses including coronaviruses. Specifically, rocaglates inhibit eukaryotic initiation factor 4A (eIF4A)-dependent mRNA translation initiation, resulting in strongly reduced viral RNA translation. Here, we assessed the antiviral activity of the synthetic rocaglate CR-31-B (-) against SARS-CoV-2 using both in vitro and ex vivo cell culture models. In Vero E6 cells, CR-31-B (-) inhibited SARS-CoV-2 replication with an EC50 of ~1.8 nM. In primary human airway epithelial cells, CR-31-B (-) reduced viral titers to undetectable levels at a concentration of 100 nM. Reduced virus reproduction was accompanied by substantially reduced viral protein accumulation and replication/transcription complex formation. The data reveal a potent anti-SARS-CoV-2 activity by CR-31-B (-), corroborating previous results obtained for other coronaviruses and supporting the idea that rocaglates may be used in first-line antiviral intervention strategies against novel and emerging RNA virus outbreaks.


Subject(s)
Antiviral Agents/pharmacology , Benzofurans/pharmacology , Hydroxamic Acids/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Antiviral Agents/chemistry , Benzofurans/chemistry , Bronchi/virology , Cells, Cultured , Chlorocebus aethiops , Eukaryotic Initiation Factor-4A/antagonists & inhibitors , Humans , Hydroxamic Acids/chemistry , Respiratory Mucosa/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Vero Cells , Viral Load/drug effects , Viral Replication Compartments/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...