Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 11(12): 10839-43, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22409008

ABSTRACT

For the preparation of printed devices based on ZnO nanoparticles (ZnO NPs), stable colloidal dispersions of these materials are highly desirable. ZnO NPs have been synthesized by Chemical Vapor Synthesis. The particles have a spherical shape with a narrow size distribution. Stable aqueous dispersions of the ZnO NPs have been successfully prepared after the addition of a polymeric stabilizer. These stable dispersions have been used to print ZnO NP films on interdigital gold structures on silicon by ink-jet printing. The printing parameters have been optimized for forming layers with high quality. Close-packed ZnO NP thin films with a thickness between 100-250 nm have been prepared. Impedance spectroscopy has been used to study the gas sensing properties of the printed films at different temperatures in air and in hydrogen. The impedance spectra show the semi-circles typical for semiconducting materials. The conductance of the printed films has been measured at room temperature with high accuracy. In hydrogen gas, the conductance is larger as expected and this behavior is reversible.

2.
Nanotechnology ; 20(44): 445701, 2009 Nov 04.
Article in English | MEDLINE | ID: mdl-19801771

ABSTRACT

Aluminum-doped zinc oxide nanoparticles have been prepared by chemical vapor synthesis, which facilitates the incorporation of a higher percentage of dopant atoms, far above the thermodynamic solubility limit of aluminum. The electrical properties of aluminum-doped and undoped zinc oxide nanoparticles were investigated by impedance spectroscopy. The impedance is measured under hydrogen and synthetic air between 323 and 673 K. The measurements under hydrogen as well as under synthetic air show transport properties depending on temperature and doping level. Under hydrogen atmosphere, a decreasing conductivity with increasing dopant content is observed, which can be explained by enhanced scattering processes due to an increasing disorder in the nanocrystalline material. The temperature coefficient for the doped samples switches from positive temperature coefficient behavior to negative temperature coefficient behavior with increasing dopant concentration. In the presence of synthetic air, the conductivity firstly increases with increasing dopant content by six orders of magnitude. The origin of the increasing conductivity is the generation of free charge carriers upon dopant incorporation. It reaches its maximum at a concentration of 7.7% of aluminum, and drops for higher doping levels. In all cases, the conductivity under hydrogen is higher than under synthetic air and can be changed reversibly by changing the atmosphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...