Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(11): 113503, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461537

ABSTRACT

A new high radial resolution 2D multichannel Charge eXchange Imaging (CXI) diagnostic is under development for deployment at DIII-D. The diagnostic system will measure low-to-intermediate radial wavenumber carbon density fluctuations by observing the n = 8 - 7 (λ = 529.06 nm) C-VI emission line, resulting from charge exchange collisions between heating neutral beam atoms and the intrinsic carbon ion density. The new CXI diagnostic will provide measurements with ΔR ∼ 0.4 cm to access higher kr instabilities (kr < 8 cm-1) predicted to arise in the steep-gradient region of the H-mode pedestal. The CXI system will feature 60 fiber bundles in a 12 × 5 arrangement, with each bundle consisting of four 1 mm fibers. A custom optical system has been designed to filter and image incoming signals onto an 8 × 8 avalanche photodiode array. Additionally, a novel electronics suite has been designed and commissioned to amplify and digitize the relatively low-intensity carbon signal at a 2 MHz bandwidth. Forward modeling results of the active C-VI emission suggest sufficient signal to noise ratios to resolve turbulent fluctuations. Prototype measurements demonstrate the ability to perform high frequency pedestal measurements.

2.
Phys Rev Lett ; 98(7): 075001, 2007 Feb 16.
Article in English | MEDLINE | ID: mdl-17359029

ABSTRACT

The impurity ion temperature evolution has been measured during three types of impulsive reconnection events in the Madison Symmetric Torus reversed field pinch. During an edge reconnection event, the drop in stored magnetic energy is small and ion heating is observed to be limited to the outer half of the plasma. Conversely, during a global reconnection event the drop in stored magnetic energy is large, and significant heating is observed at all radii. For both kinds of events, the drop in magnetic energy is sufficient to explain the increase in ion thermal energy. However, not all types of reconnection lead to ion heating. During a core reconnection event, both the stored magnetic energy and impurity ion temperature remain constant. The results suggest that a drop in magnetic energy is required for ions to be heated during reconnection, and that when this occurs heating is localized near the reconnection layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...