Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 108(5): L053203, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38115512

ABSTRACT

Inertial confinement fusion ignition requires high inflight shell velocity, good energy coupling between the hotspot and shell, and high areal density at peak compression. Three-dimensional asymmetries caused by imperfections in the drive symmetry or target can grow and damage the coupling and confinement. Recent high-yield experiments have shown that low-mode asymmetries are a key degradation mechanism and contribute to variability. We show the experimental signatures and impacts of asymmetry change with increasing implosion yield given the same initial cause. This letter has implications for improving robustness to a key degradation in ignition experiments.

2.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37862497

ABSTRACT

Neutrons generated in Inertial Confinement Fusion (ICF) experiments provide valuable information to interpret the conditions reached in the plasma. The neutron time-of-flight (nToF) technique is well suited for measuring the neutron energy spectrum due to the short time (100 ps) over which neutrons are typically emitted in ICF experiments. By locating detectors 10s of meters from the source, the neutron energy spectrum can be measured to high precision. We present a contextual review of the current state of the art in nToF detectors at ICF facilities in the United States, outlining the physics that can be measured, the detector technologies currently deployed and analysis techniques used.

3.
Rev Sci Instrum ; 94(3): 033510, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37012781

ABSTRACT

The Particle Time of Flight (PTOF) diagnostic is a chemical vapor deposition diamond detector used for measuring multiple nuclear bang times at the National Ignition Facility. Due to the non-trivial, polycrystalline structure of these detectors, individual characterization and measurement are required to interrogate the sensitivity and behavior of charge carriers. In this paper, a process is developed for determining the x-ray sensitivity of PTOF detectors and relating it to the intrinsic properties of the detector. We demonstrate that the diamond sample measured has a significant non-homogeneity in its properties, with the charge collection well described by a linear model ax + b, where a = 0.63 ± 0.16 V-1 mm-1 and b = 0.00 ± 0.04 V-1. We also use this method to confirm an electron to hole mobility ratio of 1.5 ± 1.0 and an effective bandgap of 1.8 eV rather than the theoretical 5.5 eV, leading to a large sensitivity increase.

4.
Phys Rev E ; 107(1-2): 015202, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36797905

ABSTRACT

In order to understand how close current layered implosions in indirect-drive inertial confinement fusion are to ignition, it is necessary to measure the level of alpha heating present. To this end, pairs of experiments were performed that consisted of a low-yield tritium-hydrogen-deuterium (THD) layered implosion and a high-yield deuterium-tritium (DT) layered implosion to validate experimentally current simulation-based methods of determining yield amplification. The THD capsules were designed to reduce simultaneously DT neutron yield (alpha heating) and maintain hydrodynamic similarity with the higher yield DT capsules. The ratio of the yields measured in these experiments then allowed the alpha heating level of the DT layered implosions to be determined. The level of alpha heating inferred is consistent with fits to simulations expressed in terms of experimentally measurable quantities and enables us to infer the level of alpha heating in recent high-performing implosions.

5.
Rev Sci Instrum ; 93(11): 113528, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461449

ABSTRACT

In the dynamic environment of burning, thermonuclear deuterium-tritium plasmas, diagnosing the time-resolved neutron energy spectrum is of critical importance. Strategies exist for this diagnosis in magnetic confinement fusion plasmas, which presently have a lifetime of ∼1012 longer than inertial confinement fusion (ICF) plasmas. Here, we present a novel concept for a simple, precise, and scale-able diagnostic to measure time-resolved neutron spectra in ICF plasmas. The concept leverages general tomographic reconstruction techniques adapted to time-of-flight parameter space, and then employs an updated Monte Carlo algorithm and National Ignition Facility-relevant constraints to reconstruct the time-evolving neutron energy spectrum. Reconstructed spectra of the primary 14.028 MeV nDT peak are in good agreement with the exact synthetic spectra. The technique is also used to reconstruct the time-evolving downscattered spectrum, although the present implementation shows significantly more error.

6.
Rev Sci Instrum ; 93(11): 113550, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461502

ABSTRACT

The analysis of the National Ignition Facility (NIF) neutron time-of-flight (nToF) detectors uses a forward-fit routine that depends critically on the instrument response functions (IRFs) of the diagnostics. The details of the IRFs used can have large impacts on measurements such as ion temperature and down-scattered ratio (DSR). Here, we report on the recent steps taken to construct and validate nToF IRFs at the NIF to an increased degree of accuracy, as well as remove the need for fixed DSR baseline offsets. The IRF is treated in two parts: a "core," measured experimentally with an x-ray impulse source, and a "tail" that occurs later in time and has limited experimental data. The tail region is calibrated with the data from indirect drive exploding pusher shots, which have little neutron scattering and are traditionally assumed to have zero DSR. Using analytic modeling estimates, the non-zero DSR for these shots is estimated. The impact of varying IRF tail components on DSR is investigated with a systematic parameter study, and good agreement is found with the non-zero DSR estimates. These approaches will be used to improve the precision and uncertainty of NIF nToF DSR measurements.

7.
Rev Sci Instrum ; 93(11): 113536, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461534

ABSTRACT

A concept for using an intermediate distance (0.3-3.0 m) neutron time-of-flight (nToF) to provide a constraint on the measurement of the time-dependence of ion temperature in inertial confinement fusion implosions is presented. Simulated nToF signals at different distances are generated and, with a priori knowledge of the burn-averaged quantities and burn history, analyzed to determine requirements for a future detector. Results indicate a signal-to-noise ratio >50 and time resolution <20 ps to constrain the ion temperature gradient to ∼±25% (0.5 keV/100 ps).

8.
Phys Rev Lett ; 129(19): 195002, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36399755

ABSTRACT

The application of an external 26 Tesla axial magnetic field to a D_{2} gas-filled capsule indirectly driven on the National Ignition Facility is observed to increase the ion temperature by 40% and the neutron yield by a factor of 3.2 in a hot spot with areal density and temperature approaching what is required for fusion ignition [1]. The improvements are determined from energy spectral measurements of the 2.45 MeV neutrons from the D(d,n)^{3}He reaction, and the compressed central core B field is estimated to be ∼4.9 kT using the 14.1 MeV secondary neutrons from the D(T,n)^{4}He reactions. The experiments use a 30 kV pulsed-power system to deliver a ∼3 µs current pulse to a solenoidal coil wrapped around a novel high-electrical-resistivity AuTa_{4} hohlraum. Radiation magnetohydrodynamic simulations are consistent with the experiment.

9.
Phys Rev E ; 106(2-2): 025202, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36109932

ABSTRACT

An inertial fusion implosion on the National Ignition Facility, conducted on August 8, 2021 (N210808), recently produced more than a megajoule of fusion yield and passed Lawson's criterion for ignition [Phys. Rev. Lett. 129, 075001 (2022)10.1103/PhysRevLett.129.075001]. We describe the experimental improvements that enabled N210808 and present the first experimental measurements from an igniting plasma in the laboratory. Ignition metrics like the product of hot-spot energy and pressure squared, in the absence of self-heating, increased by ∼35%, leading to record values and an enhancement from previous experiments in the hot-spot energy (∼3×), pressure (∼2×), and mass (∼2×). These results are consistent with self-heating dominating other power balance terms. The burn rate increases by an order of magnitude after peak compression, and the hot-spot conditions show clear evidence for burn propagation into the dense fuel surrounding the hot spot. These novel dynamics and thermodynamic properties have never been observed on prior inertial fusion experiments.

10.
Phys Rev E ; 106(2-2): 025201, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36110025

ABSTRACT

We present the design of the first igniting fusion plasma in the laboratory by Lawson's criterion that produced 1.37 MJ of fusion energy, Hybrid-E experiment N210808 (August 8, 2021) [Phys. Rev. Lett. 129, 075001 (2022)10.1103/PhysRevLett.129.075001]. This design uses the indirect drive inertial confinement fusion approach to heat and compress a central "hot spot" of deuterium-tritium (DT) fuel using a surrounding dense DT fuel piston. Ignition occurs when the heating from absorption of α particles created in the fusion process overcomes the loss mechanisms in the system for a duration of time. This letter describes key design changes which enabled a ∼3-6× increase in an ignition figure of merit (generalized Lawson criterion) [Phys. Plasmas 28, 022704 (2021)1070-664X10.1063/5.0035583, Phys. Plasmas 25, 122704 (2018)1070-664X10.1063/1.5049595]) and an eightfold increase in fusion energy output compared to predecessor experiments. We present simulations of the hot-spot conditions for experiment N210808 that show fundamentally different behavior compared to predecessor experiments and simulated metrics that are consistent with N210808 reaching for the first time in the laboratory "ignition."

11.
Phys Rev Lett ; 129(27): 275001, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36638294

ABSTRACT

We present measurements of ice-ablator mix at stagnation of inertially confined, cryogenically layered capsule implosions. An ice layer thickness scan with layers significantly thinner than used in ignition experiments enables us to investigate mix near the inner ablator interface. Our experiments reveal for the first time that the majority of atomically mixed ablator material is "dark" mix. It is seeded by the ice-ablator interface instability and located in the relatively cooler, denser region of the fuel assembly surrounding the fusion hot spot. The amount of dark mix is an important quantity as it is thought to affect both fusion fuel compression and burn propagation when it turns into hot mix as the burn wave propagates through the initially colder fuel region surrounding an igniting hot spot. We demonstrate a significant reduction in ice-ablator mix in the hot-spot boundary region when we increase the initial ice layer thickness.

12.
Phys Rev Lett ; 127(12): 125001, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34597087

ABSTRACT

Inertial confinement fusion implosions designed to have minimal fluid motion at peak compression often show significant linear flows in the laboratory, attributable per simulations to percent-level imbalances in the laser drive illumination symmetry. We present experimental results which intentionally varied the mode 1 drive imbalance by up to 4% to test hydrodynamic predictions of flows and the resultant imploded core asymmetries and performance, as measured by a combination of DT neutron spectroscopy and high-resolution x-ray core imaging. Neutron yields decrease by up to 50%, and anisotropic neutron Doppler broadening increases by 20%, in agreement with simulations. Furthermore, a tracer jet from the capsule fill-tube perturbation that is entrained by the hot-spot flow confirms the average flow speeds deduced from neutron spectroscopy.

13.
Rev Sci Instrum ; 92(4): 043512, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243456

ABSTRACT

Nuclear diagnostics provide measurements of inertial confinement fusion implosions used as metrics of performance for the shot. The interpretation of these measurements for shots with low mode asymmetries requires a way of combining the data to produce a "sky map" where the individual line-of-sight values are used to interpolate to other positions in the sky. These interpolations can provide information regarding the orientation of the low mode asymmetries. We describe the interpolation method, associated uncertainties, and correlations between different metrics, e.g., Tion, down scatter ratio, and hot-spot velocity direction. This work is also related to recently reported studies [H. G. Rinderknecht et al., Phys. Rev. Lett. 124, 145002 (2020) and K. M. Woo et al., Phys. Plasmas 27, 062702 (2020)] of low mode asymmetries. We report an analysis that makes use of a newly commissioned line of sight, a scheme for incorporating multiple neutron spectrum measurement types, and recent work on the sources of implosion asymmetry to provide a more complete picture of implosion performance.

14.
Rev Sci Instrum ; 92(5): 053543, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34243308

ABSTRACT

Neutron-yield diagnostics at the NIF have been upgraded to include 48 detectors placed around the NIF target chamber to assess the DT-neutron-yield isotropy for inertial confinement fusion experiments. Real-time neutron-activation detectors are used to understand yield asymmetries due to Doppler shifts in the neutron energy attributed to hotspot motion, variations in the fuel and ablator areal densities, and other physics effects. In order to isolate target physics effects, we must understand the contribution due to neutron scattering associated with the different hardware configurations used for each experiment. We present results from several calibration experiments that demonstrate the ability to achieve our goal of 1% or better precision in determining the yield isotropy.

15.
Rev Sci Instrum ; 92(5): 053526, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34243327

ABSTRACT

Recent inertial confinement fusion measurements have highlighted the importance of 3D asymmetry effects on implosion performance. One prominent example is the bulk drift velocity of the deuterium-tritium plasma undergoing fusion ("hotspot"), vHS. Upgrades to the National Ignition Facility neutron time-of-flight diagnostics now provide vHS to better than 1 part in 104 and enable cross correlations with other measurements. This work presents the impact of vHS on the neutron yield, downscatter ratio, apparent ion temperature, electron temperature, and 2D x-ray emission. The necessary improvements to diagnostic suites to take these measurements are also detailed. The benefits of using cross-diagnostic analysis to test hotspot models and theory are discussed, and cross-shot trends are shown.

16.
Rev Sci Instrum ; 92(4): 043555, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243390

ABSTRACT

The time-resolved measurement of neutrons emitted from nuclear implosions at inertial confinement fusion facilities is used to characterize the fusing plasma. Several significant quantities are routinely measured by neutron time-of-flight (nToF) detectors in these experiments. Current nToF detectors use scintillators as well as solid-state Cherenkov radiators. The latter has an inherently faster time response and can provide a co-registered γ-ray measurement as well as improved precision in the bulk hot-spot velocity. This work discusses a nToF ellipsoidal detector that also utilizes a solid-state Cherenkov radiator. The detector has the potential to achieve a fast instrument response function allowing for characterization of the γ-ray burn history as well as the ability to field the detector closer to the fusion source. Proof-of-concept testing of the nToF ellipsoidal detector has been conducted at the National Ignition Facility using commercial optics. A time-resolved neutron signal has been measured from the diagnostic. Preliminary simulations corroborate the results.

17.
Rev Sci Instrum ; 92(4): 043527, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243407

ABSTRACT

The Real Time Nuclear Activation Detector (RTNAD) array at NIF measures the distribution of 14 MeV neutrons emitted by deuterium-tritium (DT) fueled inertial confinement fusion implosions. The uniformity of the neutron distribution is an important indication of implosion symmetry and DT shell integrity. The array consists of 48 LaBr3(Ce) crystal gamma-ray spectrometers mounted outside the NIF target chamber, which continuously monitor the slow decay of the 909 keV gamma-ray line from activated 89Zr located in Zr cups surrounding each crystal. The measured decay rate dramatically increases during a DT implosion in proportion to the number of 14 MeV neutrons striking each Zr cup. The neutrons produce activated 89Zr through an (n, 2n) reaction on 90Zr, which is insensitive to low energy neutrons. The neutron flux along the detector line-of-sight at shot time is determined by extrapolating the fitted 909 keV decay curve back to shot time. Automatic analysis algorithms were developed to handle the non-stop data stream. The large number of detectors and the high statistical accuracy of the array enable the spherical harmonic modes of the neutron angular distribution to be measured up to L ≤ 4 to provide a better understanding of implosion dynamics. In addition, these data combined with measurements of the down-scattered neutrons can be used to derive fuel areal density distributions. This paper will describe the RTNAD hardware and analysis procedures.

18.
Rev Sci Instrum ; 92(2): 023516, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33648072

ABSTRACT

Measurement of the neutron spectrum from inertial confinement fusion implosions is one of the primary diagnostics of implosion performance. Analysis of the spectrum gives access to quantities such as neutron yield, hot-spot velocity, apparent ion temperature, and compressed fuel ρr through measurement of the down-scatter ratio. On the National Ignition Facility, the neutron time-of-flight suite has been upgraded to include five independent, collimated lines of sight, each comprising a high dynamic range bibenzyl/diphenylacetylene-stilbene scintillator [R. Hatarik et al., Plasma Fusion Res. 9, 4404104 (2014)] and high-speed fused silica Cherenkov detectors [A. S. Moore et al., Rev. Sci. Instrum. 89, 10I120 (2018)].

19.
Rev Sci Instrum ; 92(2): 023513, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33648112

ABSTRACT

The measurement of plasma hotspot velocity provides an important diagnostic of implosion performance for inertial confinement fusion experiments at the National Ignition Facility. The shift of the fusion product neutron mean kinetic energy as measured along multiple line-of-sight time-of-flight spectrometers provides velocity vector components from which the hotspot velocity is inferred. Multiple measurements improve the hotspot velocity inference; however, practical considerations of available space, operational overhead, and instrumentation costs limit the number of possible line-of-sight measurements. We propose a solution to this classical "experiment design" problem that optimizes the precision of the velocity inference for a limited number of measurements.

20.
Phys Rev Lett ; 125(15): 155003, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33095614

ABSTRACT

The implosion efficiency in inertial confinement fusion depends on the degree of stagnated fuel compression, density uniformity, sphericity, and minimum residual kinetic energy achieved. Compton scattering-mediated 50-200 keV x-ray radiographs of indirect-drive cryogenic implosions at the National Ignition Facility capture the dynamic evolution of the fuel as it goes through peak compression, revealing low-mode 3D nonuniformities and thicker fuel with lower peak density than simulated. By differencing two radiographs taken at different times during the same implosion, we also measure the residual kinetic energy not transferred to the hot spot and quantify its impact on the implosion performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...