Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2403594, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639424

ABSTRACT

Automated delivery of insulin based on continuous glucose monitoring is revolutionizing the way insulin-dependent diabetes is treated. However, challenges remain for the widespread adoption of these systems, including the requirement of a separate glucose sensor, sophisticated electronics and algorithms, and the need for significant user input to operate these costly therapies. Herein, a user-centric glucose-responsive cannula is reported for electronics-free insulin delivery. The cannula-made from a tough, elastomer-hydrogel hybrid membrane formed through a one-pot solvent exchange method-changes permeability to release insulin rapidly upon physiologically relevant varying glucose levels, providing simple and automated insulin delivery with no additional hardware or software. Two prototypes of the cannula are evaluated in insulin-deficient diabetic mice. The first cannula-an ends-sealed, subcutaneously inserted prototype-normalizes blood glucose levels for 3 d and controls postprandial glucose levels. The second, more translational version-a cannula with the distal end sealed and the proximal end connected to a transcutaneous injection port-likewise demonstrates tight, 3-d regulation of blood glucose levels when refilled twice daily. This proof-of-concept study may aid in the development of "smart" cannulas and next-generation insulin therapies at a reduced burden-of-care toll and cost to end-users.

2.
Sci Adv ; 9(50): eadj0411, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38091402

ABSTRACT

Strain-induced crystallization (SIC) prevalently strengthens, toughens, and enables an elastocaloric effect in elastomers. However, the crystallinity induced by mechanical stretching in common elastomers (e.g., natural rubber) is typically below 20%, and the stretchability plateaus due to trapped entanglements. We report a class of elastomers formed by end-linking and then deswelling star polymers with low defects and no trapped entanglements, which achieve strain-induced crystallinity of up to 50%. The deswollen end-linked star elastomer (DELSE) reaches an ultrahigh stretchability of 12.4 to 33.3, scaling beyond the saturated limit of common elastomers. The DELSE also exhibits a high fracture energy of 4.2 to 4.5 kJ m-2 while maintaining low hysteresis. The heightened SIC and stretchability synergistically promote a high elastocaloric effect with an adiabatic temperature change of 9.3°C.

3.
bioRxiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333419

ABSTRACT

Endovascular procedures provide surgeons and other interventionalists with minimally invasive methods to treat vascular diseases by passing guidewires, catheters, sheaths and treatment devices into the vasculature to and navigate toward a treatment site. The efficiency of this navigation affects patient outcomes, but is frequently compromised by catheter "herniation", in which the catheter-guidewire system bulges out from the intended endovascular pathway so that the interventionalist can no longer advance it. Here, we showed herniation to be a bifurcation phenomenon that can be predicted and controlled using mechanical characterizations of catheter-guidewire systems and patientspecific clinical imaging. We demonstrated our approach in laboratory models and, retrospectively, in patients who underwent procedures involving transradial neurovascular procedures with an endovascular pathway from the wrist, up in the arm, around the aortic arch, and into the neurovasculature. Our analyses identified a mathematical navigation stability criterion that predicted herniation in all of these settings. Results show that herniation can be predicted through bifurcation analysis, and provide a framework for selecting catheter-guidewire systems to avoid herniation in specific patient anatomy.

4.
J Mech Behav Biomed Mater ; 119: 104459, 2021 07.
Article in English | MEDLINE | ID: mdl-33887627

ABSTRACT

Endovascular catheter-based technologies have revolutionized the treatment of complex vascular pathology. Catheters and endovascular devices that can be maneuvered through tortuous arterial anatomy have enabled minimally invasive treatment in the peripheral arterial system. Although mechanical factors drive an interventionalist's choice of catheters and sheaths, these decisions are mostly made qualitative and based on personal experience and procedural pattern recognition. However, a definitive quantitative characterization of endovascular tools that are best suited for specific peripheral arterial beds is currently lacking. To establish a foundation for quantitative tool selection in the neurovascular and lower extremity peripheral arterial beds, we developed a nonlinear beam theory method to quantify catheter and sheath flexural rigidity. We applied this assessment to a sampling of commonly utilized commercially available peripheral arterial catheters and sheaths. Our results demonstrated that catheters and sheaths adopted for existing practice patterns to treat peripheral arterial disease in the lower extremities and neurovascular system have different but overlapping ranges of flexural rigidities that were not sensitive to luminal diameters within each procedure type. Our approach provides an accurate and effective method for characterization of flexural rigidity properties of catheters and sheaths, and a foundation for developing future technologies tailored for specific peripheral arterial systems.


Subject(s)
Catheters , Endovascular Procedures , Catheters, Indwelling , Lower Extremity
SELECTION OF CITATIONS
SEARCH DETAIL
...