Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Geobiology ; 9(2): 140-65, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21231992

ABSTRACT

Critical Zone (CZ) research investigates the chemical, physical, and biological processes that modulate the Earth's surface. Here, we advance 12 hypotheses that must be tested to improve our understanding of the CZ: (1) Solar-to-chemical conversion of energy by plants regulates flows of carbon, water, and nutrients through plant-microbe soil networks, thereby controlling the location and extent of biological weathering. (2) Biological stoichiometry drives changes in mineral stoichiometry and distribution through weathering. (3) On landscapes experiencing little erosion, biology drives weathering during initial succession, whereas weathering drives biology over the long term. (4) In eroding landscapes, weathering-front advance at depth is coupled to surface denudation via biotic processes. (5) Biology shapes the topography of the Critical Zone. (6) The impact of climate forcing on denudation rates in natural systems can be predicted from models incorporating biogeochemical reaction rates and geomorphological transport laws. (7) Rising global temperatures will increase carbon losses from the Critical Zone. (8) Rising atmospheric P(CO2) will increase rates and extents of mineral weathering in soils. (9) Riverine solute fluxes will respond to changes in climate primarily due to changes in water fluxes and secondarily through changes in biologically mediated weathering. (10) Land use change will impact Critical Zone processes and exports more than climate change. (11) In many severely altered settings, restoration of hydrological processes is possible in decades or less, whereas restoration of biodiversity and biogeochemical processes requires longer timescales. (12) Biogeochemical properties impart thresholds or tipping points beyond which rapid and irreversible losses of ecosystem health, function, and services can occur.


Subject(s)
Climate , Conservation of Natural Resources , Ecosystem , Biodiversity , Carbon Cycle , Greenhouse Effect , Soil , Water Cycle
2.
Proc Natl Acad Sci U S A ; 103(29): 11092-7, 2006 Jul 18.
Article in English | MEDLINE | ID: mdl-16832047

ABSTRACT

We investigated the fate of soil nutrients after centuries of indigenous dryland agriculture in Hawai'i using a coupled geochemical and archaeological approach. Beginning approximately 500 years ago, farmers began growing dryland taro and sweet potato on the leeward slopes of East Maui. Their digging sticks pierced a subsurface layer of cinders, enhancing crop access to the soil water stored below the intact cinders. Cultivation also catalyzed nutrient losses, directly by facilitating leaching of mobile nutrients after disturbing a stratigraphic barrier to vertical water movement, and indirectly by increasing mineral weathering and subsequent uptake and harvest. As a result, centuries of cultivation lowered volumetric total calcium, magnesium, sodium, potassium, and phosphorus content by 49%, 28%, 75%, 37%, and 32%, respectively. In the absence of written records, we used the difference in soil phosphorus to estimate that prehistoric yields were sufficient to meet local demand over very long time frames, but the associated acceleration of nutrient losses could have compromised subsequent yields.


Subject(s)
Agriculture , Nutritional Physiological Phenomena , Soil , Elements , Hawaii , Time Factors
3.
Science ; 304(5677): 1665-9, 2004 Jun 11.
Article in English | MEDLINE | ID: mdl-15192228

ABSTRACT

Before European contact, Hawai'i supported large human populations in complex societies that were based on multiple pathways of intensive agriculture. We show that soils within a long-abandoned 60-square-kilometer dryland agricultural complex are substantially richer in bases and phosphorus than are those just outside it, and that this enrichment predated the establishment of intensive agriculture. Climate and soil fertility combined to constrain large dryland agricultural systems and the societies they supported to well-defined portions of just the younger islands within the Hawaiian archipelago; societies on the older islands were based on irrigated wetland agriculture. Similar processes may have influenced the dynamics of agricultural intensification across the tropics.

4.
Proc Natl Acad Sci U S A ; 101(26): 9936-41, 2004 Jun 29.
Article in English | MEDLINE | ID: mdl-15210963

ABSTRACT

Beginning ca. A.D. 1400, Polynesian farmers established permanent settlements along the arid southern flank of Haleakala Volcano, Maui, Hawaiian Islands; peak population density (43-57 persons per km(2)) was achieved by A.D. 1700-1800, and it was followed by the devastating effects of European contact. This settlement, based on dryland agriculture with sweet potato as a main crop, is represented by >3,000 archaeological features investigated to date. Geological and environmental factors are the most important influence on Polynesian farming and settlement practices in an agriculturally marginal landscape. Interactions between lava flows, whose ages range from 3,000 to 226,000 years, and differences in rainfall create an environmental mosaic that constrained precontact Polynesian farming practices to a zone defined by aridity at low elevation and depleted soil nutrients at high elevation. Within this productive zone, however, large-scale agriculture was concentrated on older, tephra-blanketed lava flows; younger flows were reserved for residential sites, small ritual gardens, and agricultural temples.


Subject(s)
Agriculture/history , Archaeology , Cultural Evolution , Environment , Climate , Ecosystem , Geologic Sediments/chemistry , Hawaii , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , Housing , Polynesia/ethnology , Soil/analysis , Time Factors , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...