Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 1739, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38242973

ABSTRACT

The market approval of Tazemetostat (TAZVERIK) for the treatment of follicular lymphoma and epithelioid sarcoma has established "enhancer of zeste homolog 2" (EZH2) as therapeutic target in oncology. Despite their structural similarities and common mode of inhibition, Tazemetostat and other EZH2 inhibitors display differentiated pharmacological profiles based on their target residence time. Here we established high throughput screening methods based on time-resolved fluorescence energy transfer, scintillation proximity and high content analysis microscopy to quantify the biochemical and cellular binding of a chemically diverse collection of EZH2 inhibitors. These assays allowed to further characterize the interplay between EZH2 allosteric modulation by methylated histone tails (H3K27me3) and inhibitor binding, and to evaluate the impact of EZH2's clinically relevant mutant Y641N on drug target residence times. While all compounds in this study exhibited slower off-rates, those with clinical candidate status display significantly slower target residence times in wild type EZH2 and disease-related mutants. These inhibitors interact in a more entropy-driven fashion and show the most persistent effects in cellular washout and antiproliferative efficacy experiments. Our work provides mechanistic insights for the largest cohort of EZH2 inhibitors reported to date, demonstrating that-among several other binding parameters-target residence time is the best predictor of cellular efficacy.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Pyridones , Humans , Benzamides , Biphenyl Compounds , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Morpholines , Pyridones/therapeutic use
2.
J Immunother Cancer ; 11(11)2023 11.
Article in English | MEDLINE | ID: mdl-37963637

ABSTRACT

BACKGROUND: The metabolism of tryptophan to kynurenines (KYN) by indoleamine-2,3-dioxygenase or tryptophan-2,3-dioxygenase is a key pathway of constitutive and adaptive tumor immune resistance. The immunosuppressive effects of KYN in the tumor microenvironment are predominantly mediated by the aryl hydrocarbon receptor (AhR), a cytosolic transcription factor that broadly suppresses immune cell function. Inhibition of AhR thus offers an antitumor therapy opportunity via restoration of immune system functions. METHODS: The expression of AhR was evaluated in tissue microarrays of head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC) and colorectal cancer (CRC). A structure class of inhibitors that block AhR activation by exogenous and endogenous ligands was identified, and further optimized, using a cellular screening cascade. The antagonistic properties of the selected AhR inhibitor candidate BAY 2416964 were determined using transactivation assays. Nuclear translocation, target engagement and the effect of BAY 2416964 on agonist-induced AhR activation were assessed in human and mouse cancer cells. The immunostimulatory properties on gene and cytokine expression were examined in human immune cell subsets. The in vivo efficacy of BAY 2416964 was tested in the syngeneic ovalbumin-expressing B16F10 melanoma model in mice. Coculture of human H1299 NSCLC cells, primary peripheral blood mononuclear cells and fibroblasts mimicking the human stromal-tumor microenvironment was used to assess the effects of AhR inhibition on human immune cells. Furthermore, tumor spheroids cocultured with tumor antigen-specific MART-1 T cells were used to study the antigen-specific cytotoxic T cell responses. The data were analyzed statistically using linear models. RESULTS: AhR expression was observed in tumor cells and tumor-infiltrating immune cells in HNSCC, NSCLC and CRC. BAY 2416964 potently and selectively inhibited AhR activation induced by either exogenous or endogenous AhR ligands. In vitro, BAY 2416964 restored immune cell function in human and mouse cells, and furthermore enhanced antigen-specific cytotoxic T cell responses and killing of tumor spheroids. In vivo, oral application with BAY 2416964 was well tolerated, induced a proinflammatory tumor microenvironment, and demonstrated antitumor efficacy in a syngeneic cancer model in mice. CONCLUSIONS: These findings identify AhR inhibition as a novel therapeutic approach to overcome immune resistance in various types of cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Dioxygenases , Head and Neck Neoplasms , Lung Neoplasms , Humans , Mice , Animals , Tryptophan , Receptors, Aryl Hydrocarbon/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Leukocytes, Mononuclear/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Lung Neoplasms/drug therapy , Kynurenine/metabolism , Immunotherapy , Immunologic Factors , Head and Neck Neoplasms/drug therapy , Tumor Microenvironment
3.
ChemMedChem ; 18(20): e202300464, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37817354

ABSTRACT

The 17th EFMC Short Course on Medicinal Chemistry took place April 23-26, 2023 in Oegstgeest, near Leiden in the Netherlands. It covered for the first time the exciting topic of Targeted Protein Degradation (full title: Small Molecule Protein Degraders: A New Opportunity for Drug Design and Development). The course was oversubscribed, with 35 attendees and 6 instructors mainly from Europe but also from the US and South Africa, and representing both industry and academia. This report summarizes the successful event, key lectures given and topics discussed.


Subject(s)
Chemistry, Pharmaceutical , Drug Design , Europe , Proteolysis , South Africa
4.
Nat Rev Chem ; 7(11): 752-753, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37880428
5.
Cancer Discov ; 13(10): 2150-2165, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37712569

ABSTRACT

Small-molecule chemical "probes" complement the use of molecular biology techniques to explore, validate, and generate hypotheses on the function of proteins in diseases such as cancer. Unfortunately, the poor selection and use of small-molecule reagents can lead to incorrect conclusions. Here, we illustrate examples of poor chemical tools and suggest best practices for the selection, validation, and use of high-quality chemical probes in cancer research. We also note the complexity associated with tools for novel drug modalities, exemplified by protein degraders, and provide advice and resources to facilitate the independent identification of appropriate small-molecule probes by researchers. SIGNIFICANCE: Validation of biological targets and pathways will be aided by a shared understanding of the criteria of potency, selectivity, and target engagement associated with small-molecule reagents ("chemical probes") that enable that work. Interdisciplinary collaboration between cancer biologists, medicinal chemists, and chemical biologists and the awareness of available resources will reduce misleading data generation and interpretation, strengthen data robustness, and improve productivity in academic and industrial research.


Subject(s)
Neoplasms , Research , Humans , Proteins , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism
6.
J Med Chem ; 66(14): 9297-9312, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37403870

ABSTRACT

Within druggable target space, new small-molecule modalities, particularly covalent inhibitors and targeted degraders, have expanded the repertoire of medicinal chemists. Molecules with such modes of action have a large potential not only as drugs but also as chemical probes. Criteria have previously been established to describe the potency, selectivity, and properties of small-molecule probes that are qualified to enable the interrogation and validation of drug targets. These definitions have been tailored to reversibly acting modulators but fall short in their applicability to other modalities. While initial guidelines have been proposed, we delineate here a full set of criteria for the characterization of covalent, irreversible inhibitors as well as heterobifunctional degraders ("proteolysis-targeting chimeras", or PROTACs) and molecular glue degraders. We propose modified potency and selectivity criteria compared to those for reversible inhibitors. We discuss their relevance and highlight examples of suitable probe and pathfinder compounds.


Subject(s)
Ubiquitin-Protein Ligases , Proteolysis
7.
ChemMedChem ; 18(13): e202300127, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37276375

ABSTRACT

The status of industrial Medicinal Chemistry was discussed with European Medicinal Chemistry Leaders from large to mid-sized pharma and CRO companies as well as biotechs. The chemical modality space has expanded recently from small molecules to address new challenging targets. Besides the classical SAR/SPR optimization of drug molecules also their 'greenness' has increasing importance. The entire pharma discovery ecosystem has developed significantly. Beyond pharma and academia new key players such as Biotech and integrated CROs as well as Digital companies have appeared and are now to a large extend fueled by VC money. Digitalization is happening everywhere but surprisingly did not change speed and success rates of projects so far. Future Medicinal Chemists will still have to be excellent synthetic chemists but in addition they must be knowledgeable in new computational areas such as data sciences. Their ability to collaborate and to work in teams is key.


Subject(s)
Chemistry, Pharmaceutical , Drug Industry , Ecosystem , Europe
8.
RSC Med Chem ; 14(6): 1002-1011, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37360399

ABSTRACT

Target 2035, an international federation of biomedical scientists from the public and private sectors, is leveraging 'open' principles to develop a pharmacological tool for every human protein. These tools are important reagents for scientists studying human health and disease and will facilitate the development of new medicines. It is therefore not surprising that pharmaceutical companies are joining Target 2035, contributing both knowledge and reagents to study novel proteins. Here, we present a brief progress update on Target 2035 and highlight some of industry's contributions.

9.
Br J Pharmacol ; 180(19): 2500-2513, 2023 10.
Article in English | MEDLINE | ID: mdl-37170767

ABSTRACT

BACKGROUND AND PURPOSE: First-generation soluble guanylate cyclase (sGC) stimulators have shown clinical benefit in pulmonary hypertension (riociguat) and chronic heart failure (vericiguat). However, given the broad therapeutic opportunities for sGC stimulators, tailored molecules for distinct indications are required. EXPERIMENTAL APPROACH: We report the high-throughput screening (HTS)-based discovery of a second generation of sGC stimulators from a novel imidazo[1,2-a]pyridine lead series. An intense medicinal chemistry programme resulted in the discovery of the sGC stimulator BAY 1165747 (BAY-747). The pharmacokinetic profile of BAY-747 was determined in different species, and it was broadly characterized in pharmacological model systems relevant for vasodilatation and hypertension. KEY RESULTS: BAY-747 is a highly potent sGC stimulator in vitro. In addition, BAY-747 showed an excellent pharmacokinetic profile with long half-life and low peak-to-trough ratio. BAY-747 was investigated in experimental in vivo models of malignant and resistant hypertension (rHT). In spontaneously hypertensive (SH) rats, BAY-747 caused a dose-related and long-lasting decrease in mean arterial blood pressure (MAP). Oral treatment over 12 days resulted in a persistent decrease. BAY-747 provided additional benefit when dosed on top of losartan, amlodipine or spironolactone and even on top of triple combinations of frequently used antihypertensive drugs. In a new canine model of rHT, BAY-747 caused a dose-related and long-lasting (>6 h) MAP decrease. CONCLUSION AND IMPLICATIONS: BAY-747 is a potent, orally available sGC stimulator. BAY-747 shows long-acting pharmacodynamic effects with a very low peak-to-trough ratio. BAY-747 could be a treatment alternative for patients with hypertension, especially those not responding to standard-of-care therapy.


Subject(s)
Heart Failure , Hypertension, Pulmonary , Hypertension , Rats , Animals , Dogs , Soluble Guanylyl Cyclase , Hypertension/drug therapy , Hypertension, Pulmonary/drug therapy , Heart Failure/drug therapy , Vasodilator Agents/therapeutic use
10.
J Med Chem ; 66(11): 7280-7303, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37040336

ABSTRACT

Herein, we describe the identification, chemical optimization, and preclinical characterization of novel soluble guanylate cyclase (sGC) stimulators. Given the very broad therapeutic opportunities for sGC stimulators, new tailored molecules for distinct indications with specific pharmacokinetics, tissue distribution, and physicochemical properties will be required in the future. Here, we report the ultrahigh-throughput (uHTS)-based discovery of a new class of sGC stimulators from an imidazo[1,2-a]pyridine lead series. Through the extensive and staggered optimization of the initial screening hit, liabilities such as potency, metabolic stability, permeation, and solubility could be substantially improved in parallel. These efforts resulted ultimately in the discovery of the new sGC stimulators 22 and 28. It turned out that BAY 1165747 (BAY-747, 28) could be an ideal treatment alternative for patients with hypertension, especially those not responding to standard anti-hypertensive therapy (resistant hypertension). BAY-747 (28) demonstrated sustained hemodynamic effects up to 24 h in phase 1 studies.


Subject(s)
Guanylate Cyclase , Hypertension , Humans , Soluble Guanylyl Cyclase/metabolism , Guanylate Cyclase/metabolism , Hypertension/drug therapy , Vasodilator Agents , Pyridines/pharmacology , Pyridines/therapeutic use , Nitric Oxide/metabolism
11.
Nat Rev Chem ; 7(1): 3-4, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37117823
12.
ChemMedChem ; 18(9): e202300002, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36892096

ABSTRACT

Hit generation is a crucial step in drug discovery that will determine the speed and chance of success of identifying drug candidates. Many strategies are now available to identify chemical starting points, or hits, and each biological target warrants a tailored approach. In this set of best practices, we detail the essential approaches for target centric hit generation and the opportunities and challenges they come with. We then provide guidance on how to validate hits to ensure medicinal chemistry is only performed on compounds and scaffolds that engage the target of interest and have the desired mode of action. Finally, we discuss the design of integrated hit generation strategies that combine several approaches to maximize the chance of identifying high quality starting points to ensure a successful drug discovery campaign.


Subject(s)
Chemistry, Pharmaceutical , Drug Discovery , Biology
13.
ChemMedChem ; 18(8): e202200615, 2023 04 17.
Article in English | MEDLINE | ID: mdl-36749883

ABSTRACT

Herein, we describe a systematic SAR- and SPR-investigation of the peptidomimetic hydroxy-proline based VHL-ligand VH032, from which most to-date published VHL-targeting PROTACs have been derived. This study provides for the first time a consistent data set which allows for direct comparison of structural variations including those which were so far hidden in patent literature. The gained knowledge about improved VHL binders was used to design a small library of highly potent BRD4-degraders comprising different VHL exit vectors. Newly designed degraders showed favorable molecular properties and significantly improved degradation potency compared to MZ1.


Subject(s)
Nuclear Proteins , Von Hippel-Lindau Tumor Suppressor Protein , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Ligands , Nuclear Proteins/metabolism , Proteolysis , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism
14.
RSC Med Chem ; 13(1): 13-21, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35211674

ABSTRACT

Twenty years after the publication of the first draft of the human genome, our knowledge of the human proteome is still fragmented. The challenge of translating the wealth of new knowledge from genomics into new medicines is that proteins, and not genes, are the primary executers of biological function. Therefore, much of how biology works in health and disease must be understood through the lens of protein function. Accordingly, a subset of human proteins has been at the heart of research interests of scientists over the centuries, and we have accumulated varying degrees of knowledge about approximately 65% of the human proteome. Nevertheless, a large proportion of proteins in the human proteome (∼35%) remains uncharacterized, and less than 5% of the human proteome has been successfully targeted for drug discovery. This highlights the profound disconnect between our abilities to obtain genetic information and subsequent development of effective medicines. Target 2035 is an international federation of biomedical scientists from the public and private sectors, which aims to address this gap by developing and applying new technologies to create by year 2035 chemogenomic libraries, chemical probes, and/or biological probes for the entire human proteome.

16.
SLAS Discov ; 26(8): 947-960, 2021 09.
Article in English | MEDLINE | ID: mdl-34154424

ABSTRACT

SMYD3 (SET and MYND domain-containing protein 3) is a protein lysine methyltransferase that was initially described as an H3K4 methyltransferase involved in transcriptional regulation. SMYD3 has been reported to methylate and regulate several nonhistone proteins relevant to cancer, including mitogen-activated protein kinase kinase kinase 2 (MAP3K2), vascular endothelial growth factor receptor 1 (VEGFR1), and the human epidermal growth factor receptor 2 (HER2). In addition, overexpression of SMYD3 has been linked to poor prognosis in certain cancers, suggesting SMYD3 as a potential oncogene and attractive cancer drug target. Here we report the discovery of a novel SMYD3 inhibitor. We performed a thermal shift assay (TSA)-based high-throughput screening (HTS) with 410,000 compounds and identified a novel benzodiazepine-based SMYD3 inhibitor series. Crystal structures revealed that this series binds to the substrate binding site and occupies the hydrophobic lysine binding pocket via an unprecedented hydrogen bonding pattern. Biochemical assays showed substrate competitive behavior. Following optimization and extensive biophysical validation with surface plasmon resonance (SPR) analysis and isothermal titration calorimetry (ITC), we identified BAY-6035, which shows nanomolar potency and selectivity against kinases and other PKMTs. Furthermore, BAY-6035 specifically inhibits methylation of MAP3K2 by SMYD3 in a cellular mechanistic assay with an IC50 <100 nM. Moreover, we describe a congeneric negative control to BAY-6035. In summary, BAY-6035 is a novel selective and potent SMYD3 inhibitor probe that will foster the exploration of the biological role of SMYD3 in diseased and nondiseased tissues.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Discovery/methods , High-Throughput Screening Assays/methods , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/chemistry , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Binding , Small Molecule Libraries , Structure-Activity Relationship
17.
ChemMedChem ; 16(11): 1736-1739, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33825353

ABSTRACT

Phenotypic drug discovery has a long track record of delivering innovative drugs and has received renewed attention in the last few years. The promise of this approach, however, comes with several challenges that should be addressed to avoid wasting time and resources on drugs with undesired modes of action or, worse, false-positive hits. In this set of best practices, we go over the essential steps of phenotypic drug discovery and provide guidance on how to increase the chance of success in identifying validated and relevant chemical starting points for optimization: selecting the right assay, selecting the right compound screening library and developing appropriate hit validation assays. Then, we highlight the importance of initiating studies to determine the mode of action of the identified hits early and present the current state of the art.


Subject(s)
Chemistry, Pharmaceutical , Drug Discovery , Europe , Humans , Phenotype , Students
18.
ChemMedChem ; 16(7): 1116-1125, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33513288

ABSTRACT

Protein arginine N-methyl transferase 4 (PRMT4) asymmetrically dimethylates the arginine residues of histone H3 and nonhistone proteins. The overexpression of PRMT4 in several cancers has stimulated interest in the discovery of inhibitors as biological tools and, potentially, therapeutics. Although several PRMT4 inhibitors have been reported, most display poor selectivity against other members of the PRMT family of methyl transferases. Herein, we report the structure-based design of a new class of alanine-containing 3-arylindoles as potent and selective PRMT4 inhibitors, and describe key structure-activity relationships for this class of compounds.


Subject(s)
Alanine/pharmacology , Antineoplastic Agents/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Neoplasms/drug therapy , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Alanine/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , HEK293 Cells , Humans , Indoles/chemical synthesis , Indoles/chemistry , Molecular Structure , Neoplasms/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Structure-Activity Relationship
19.
ChemMedChem ; 15(24): 2388-2390, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32881363

ABSTRACT

As part of an initiative aimed to share best practices in Medicinal Chemistry, the European Federation for Medicinal Chemistry (EFMC) is preparing a series of webinars and slide sets focused on the early phase of drug discovery. This educational material is freely accessible through the EFMC. The main target audiences are students or early career scientists and we also believe it will be valuable for experienced practitioners. The first of the series is focused on the generation and validation of high-quality chemical probes, which are critical for drug discovery and more broadly to further our understanding of human biology and disease.


Subject(s)
Chemistry, Pharmaceutical/education , Drug Discovery/education , Indicators and Reagents/standards , International Agencies , Societies, Scientific , Webcasts as Topic , Europe , Humans , Indicators and Reagents/chemistry
20.
Elife ; 72018 04 20.
Article in English | MEDLINE | ID: mdl-29676732

ABSTRACT

Potent, selective and broadly characterized small molecule modulators of protein function (chemical probes) are powerful research reagents. The pharmaceutical industry has generated many high-quality chemical probes and several of these have been made available to academia. However, probe-associated data and control compounds, such as inactive structurally related molecules and their associated data, are generally not accessible. The lack of data and guidance makes it difficult for researchers to decide which chemical tools to choose. Several pharmaceutical companies (AbbVie, Bayer, Boehringer Ingelheim, Janssen, MSD, Pfizer, and Takeda) have therefore entered into a pre-competitive collaboration to make available a large number of innovative high-quality probes, including all probe-associated data, control compounds and recommendations on use (https://openscienceprobes.sgc-frankfurt.de/). Here we describe the chemical tools and target-related knowledge that have been made available, and encourage others to join the project.


Subject(s)
Molecular Probes/metabolism , Pharmacology/methods , Proteins/metabolism , Technology, Pharmaceutical/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...