Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 55(2): 323-40, 2016 Jan 10.
Article in English | MEDLINE | ID: mdl-26835769

ABSTRACT

The Gemini Planet Imager's adaptive optics (AO) subsystem was designed specifically to facilitate high-contrast imaging. A definitive description of the system's algorithms and technologies as built is given. 564 AO telemetry measurements from the Gemini Planet Imager Exoplanet Survey campaign are analyzed. The modal gain optimizer tracks changes in atmospheric conditions. Science observations show that image quality can be improved with the use of both the spatially filtered wavefront sensor and linear-quadratic-Gaussian control of vibration. The error budget indicates that for all targets and atmospheric conditions AO bandwidth error is the largest term.

2.
Proc Natl Acad Sci U S A ; 111(35): 12661-6, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-24821792

ABSTRACT

The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 10(6) at 0.75 arcseconds and 10(5) at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of [Formula: see text] near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017.

3.
Nature ; 433(7023): 286-9, 2005 Jan 20.
Article in English | MEDLINE | ID: mdl-15662417

ABSTRACT

Mass is the most fundamental parameter of a star, yet it is also one of the most difficult to measure directly. In general, astronomers estimate stellar masses by determining the luminosity and using the 'mass-luminosity' relationship, but this relationship has never been accurately calibrated for young, low-mass stars and brown dwarfs. Masses for these low-mass objects are therefore constrained only by theoretical models. A new high-contrast adaptive optics camera enabled the discovery of a young (50 million years) companion only 0.156 arcseconds (2.3 au) from the more luminous (> 120 times brighter) star AB Doradus A. Here we report a dynamical determination of the mass of the newly resolved low-mass companion AB Dor C, whose mass is 0.090 +/- 0.005 solar masses. Given its measured 1-2-micrometre luminosity, we have found that the standard mass-luminosity relations overestimate the near-infrared luminosity of such objects by about a factor of approximately 2.5 at young ages. The young, cool objects hitherto thought to be substellar in mass are therefore about twice as massive, which means that the frequency of brown dwarfs and planetary mass objects in young stellar clusters has been overestimated.

4.
Hum Gene Ther ; 14(3): 277-97, 2003 Feb 10.
Article in English | MEDLINE | ID: mdl-12639307

ABSTRACT

For the development of efficient and safe gene therapy protocols for clinical application it is desirable to determine the tissue dose of vector-mediated therapeutic gene expression noninvasively in vivo. The herpes simplex virus type 1 thymidine kinase gene (HSV-1-tk) has been shown to function as a marker gene for the direct noninvasive in vivo localization of thymidine kinase (TK) expression by positron emission tomography (PET). Using bicistronic or multicistronic gene-expressing cassettes with tk as the PET marker gene, the quantitative analysis of tk gene expression may indirectly indicate the distribution and the level of expression of linked and proportionally coexpressed genes. Here, we describe the construction and functional evaluation of HSV-1 amplicon vectors mediating proportional coexpression of HSV-1-tk as PET marker gene and the enhanced green fluorescent protein gene (gfp) as proof of principle and cell culture marker gene and the Escherichia coli cytosine deaminase (cd) as therapeutic gene. Several double-/triple-gene constructs expressing HSV-1-tk, gfp, and E. coli cd were engineered based on gene fusion or the use of an internal ribosome entry site (IRES). Functional analysis in cell culture (green fluorescent protein [GFP] fluorescence and sensitivity to the prodrugs ganciclovir [GCV] and 5-fluorocytosine [5-FC]) and Western blots were carried out after infection of proliferating rat 9L gliosarcoma and human Gli36 glioma cells with helper virus-free packaged HSV-1 amplicon vectors. To study the ability of PET to differentiate various levels of tk expression noninvasively in vivo, retrovirally transduced and selected populations of rat F98 and human Gli36dEGFR glioma cells with defined levels of proportionally coexpressed tk and gfp genes were grown as subcutaneous tumors in nude rats and nude mice, and tk imaging by PET was performed. To study HSV-1 amplicon vector-mediated gene coexpression in vivo, HSV-1 amplicon vectors bearing coexpression constructs were injected (4 x 10(7) to 1 x 10(8) transducing units) into subcutaneously growing Gli36dEGFR gliomas in nude animals, and tk imaging was performed 24 hr later. All vector constructs mediated GFP expression and sensitized 9L and Gli36 cells toward GCV- and 5-FC-mediated cell killing in a drug dose-dependent manner, respectively. The levels of gene expression varied depending on the location of the genes within the constructs indicating the influence of the IRES on the level of expression of the second gene. Moreover, functional proportional coexpression of the PET marker gene HSV-1-tk and the linked therapeutic E. coli cd gene was observed. In selected tumor cell populations, subtle IRES-dependent differences of tk gene expression could be noninvasively distinguished by PET with good correlation between quantitative assays for IRES-dependent attenuated GFP and TK expression in culture and in vivo. After infection of subcutaneously growing gliomas with HSV-1 amplicon vectors, various levels of TK expression were found ranging from 0.011-0.062 percentage injected dose per gram (%ID/g). These values were 4.0- to 5.7-fold lower than positive control tumor cells. TK expression could be imaged by PET in vivo even with the tk gene located at the weak position downstream from the IRES. In conclusion, these HSV-1 amplicon vectors carrying HSV-1-tk as PET marker gene and any linked therapeutic gene will serve an indirect noninvasive assessment of the distribution of therapeutic gene expression by PET. Monitoring the correlation between primary transduction and therapeutic efficiency of a given vector is highly desirable for the development of safe and efficient gene therapy and vector application protocols in clinical applications.


Subject(s)
Genetic Vectors , Simplexvirus , Tomography, Emission-Computed , Animals , Genes, Reporter , Rats , Thymidine Kinase/genetics , Thymidine Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...