Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 14044, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34234180

ABSTRACT

The three SoxD proteins, Sox5, Sox6 and Sox13, represent closely related transcription factors with important roles during development. In the developing nervous system, SoxD proteins have so far been primarily studied in oligodendroglial cells and in interneurons of brain and spinal cord. In oligodendroglial cells, Sox5 and Sox6 jointly maintain the precursor state, interfere with terminal differentiation, and thereby ensure the proper timing of myelination in the central nervous system. Here we studied the role of SoxD proteins in Schwann cells, the functional counterpart of oligodendrocytes in the peripheral nervous system. We show that Schwann cells express Sox5 and Sox13 but not Sox6. Expression was transient and ceased with the onset of terminal differentiation. In mice with early Schwann cell-specific deletion of both Sox5 and Sox13, embryonic Schwann cell development was not substantially affected and progressed normally into the promyelinating stage. However, there was a mild and transient delay in the myelination of the peripheral nervous system of these mice. We therefore conclude that SoxD proteins-in stark contrast to their action in oligodendrocytes-promote differentiation and myelination in Schwann cells.


Subject(s)
Myelin Sheath/metabolism , Neurogenesis/genetics , Peripheral Nervous System/growth & development , Peripheral Nervous System/metabolism , SOXD Transcription Factors/deficiency , Schwann Cells/metabolism , Animals , Autoantigens/genetics , Biomarkers , Gene Deletion , Gene Expression , Immunohistochemistry , Mice , Multigene Family , Myelin Sheath/ultrastructure , Organ Specificity , SOXD Transcription Factors/genetics , Schwann Cells/ultrastructure
2.
Nucleic Acids Res ; 48(16): 8959-8976, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32672815

ABSTRACT

Schwann cells are the nerve ensheathing cells of the peripheral nervous system. Absence, loss and malfunction of Schwann cells or their myelin sheaths lead to peripheral neuropathies such as Charcot-Marie-Tooth disease in humans. During Schwann cell development and myelination chromatin is dramatically modified. However, impact and functional relevance of these modifications are poorly understood. Here, we analyzed histone H2B monoubiquitination as one such chromatin modification by conditionally deleting the Rnf40 subunit of the responsible E3 ligase in mice. Rnf40-deficient Schwann cells were arrested immediately before myelination or generated abnormally thin, unstable myelin, resulting in a peripheral neuropathy characterized by hypomyelination and progressive axonal degeneration. By combining sequencing techniques with functional studies we show that H2B monoubiquitination does not influence global gene expression patterns, but instead ensures selective high expression of myelin and lipid biosynthesis genes and proper repression of immaturity genes. This requires the specific recruitment of the Rnf40-containing E3 ligase by Egr2, the central transcriptional regulator of peripheral myelination, to its target genes. Our study identifies histone ubiquitination as essential for Schwann cell myelination and unravels new disease-relevant links between chromatin modifications and transcription factors in the underlying regulatory network.


Subject(s)
Early Growth Response Protein 2/physiology , Hereditary Sensory and Motor Neuropathy/metabolism , Histones/metabolism , Peripheral Nervous System/metabolism , Schwann Cells/metabolism , Animals , Cell Line, Tumor , HEK293 Cells , Humans , Mice , Mice, Transgenic , Peripheral Nervous System/pathology , Rats , Schwann Cells/pathology , Ubiquitin-Protein Ligases/genetics , Ubiquitination
3.
Dev Biol ; 444 Suppl 1: S308-S324, 2018 12 01.
Article in English | MEDLINE | ID: mdl-29807017

ABSTRACT

Carotid body glomus cells mediate essential reflex responses to arterial blood hypoxia. They are dopaminergic and secrete growth factors that support dopaminergic neurons, making the carotid body a potential source of patient-specific cells for Parkinson's disease therapy. Like adrenal chromaffin cells, which are also hypoxia-sensitive, glomus cells are neural crest-derived and require the transcription factors Ascl1 and Phox2b; otherwise, their development is little understood at the molecular level. Here, analysis in chicken and mouse reveals further striking molecular parallels, though also some differences, between glomus and adrenal chromaffin cell development. Moreover, histology has long suggested that glomus cell precursors are 'émigrés' from neighbouring ganglia/nerves, while multipotent nerve-associated glial cells are now known to make a significant contribution to the adrenal chromaffin cell population in the mouse. We present conditional genetic lineage-tracing data from mice supporting the hypothesis that progenitors expressing the glial marker proteolipid protein 1, presumably located in adjacent ganglia/nerves, also contribute to glomus cells. Finally, we resolve a paradox for the 'émigré' hypothesis in the chicken - where the nearest ganglion to the carotid body is the nodose, in which the satellite glia are neural crest-derived, but the neurons are almost entirely placode-derived - by fate-mapping putative nodose neuronal 'émigrés' to the neural crest.


Subject(s)
Carotid Body/embryology , Chromaffin Cells/metabolism , Pericytes/metabolism , Adrenal Glands/metabolism , Adrenal Glands/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Body Patterning/physiology , Cell Differentiation , Cell Hypoxia/physiology , Chick Embryo , Chickens/metabolism , Mice , Mice, Knockout , Myelin Proteolipid Protein/physiology , Neural Crest/metabolism , Neurons/metabolism , Pericytes/physiology , Transcription Factors/metabolism
5.
Nat Commun ; 9(1): 899, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29500351

ABSTRACT

Oligodendrocytes produce myelin for rapid transmission and saltatory conduction of action potentials in the vertebrate central nervous system. Activation of the myelination program requires several transcription factors including Sox10, Olig2, and Nkx2.2. Functional interactions among them are poorly understood and important components of the regulatory network are still unknown. Here, we identify Nfat proteins as Sox10 targets and regulators of oligodendroglial differentiation in rodents and humans. Overall levels and nuclear fraction increase during differentiation. Inhibition of Nfat activity impedes oligodendrocyte differentiation in vitro and in vivo. On a molecular level, Nfat proteins cooperate with Sox10 to relieve reciprocal repression of Olig2 and Nkx2.2 as precondition for oligodendroglial differentiation and myelination. As Nfat activity depends on calcium-dependent activation of calcineurin signaling, regulatory network and oligodendroglial differentiation become sensitive to calcium signals. NFAT proteins are also detected in human oligodendrocytes, downregulated in active multiple sclerosis lesions and thus likely relevant in demyelinating disease.


Subject(s)
Calcineurin/metabolism , Cell Differentiation , Myelin Sheath/metabolism , NFATC Transcription Factors/metabolism , Oligodendroglia/cytology , Oligodendroglia/metabolism , Signal Transduction , Animals , Conserved Sequence , Evolution, Molecular , Gene Expression Regulation , Homeobox Protein Nkx-2.2 , Homeodomain Proteins/metabolism , Humans , Mice , Nuclear Proteins , Oligodendrocyte Transcription Factor 2/metabolism , Rats , SOXE Transcription Factors/metabolism , Transcription Factors/metabolism , Zebrafish Proteins
6.
Hum Mol Genet ; 27(6): 1078-1092, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29361054

ABSTRACT

Human SOX10 mutations lead to various diseases including Waardenburg syndrome, Hirschsprung disease, peripheral demyelinating neuropathy, central leukodystrophy, Kallmann syndrome and various combinations thereof. It has been postulated that PCWH as a combination of Waardenburg and Hirschsprung disease, peripheral neuropathy and central leukodystrophy is caused by heterozygous SOX10 mutations that result in the presence of a dominantly acting mutant SOX10 protein in the patient. One such protein with postulated dominant action is SOX10 Q377X. In this study, we generated a mouse model, in which the corresponding mutation was introduced into the Sox10 locus in such a way that Sox10 Q377X is constitutively expressed. Heterozygous mice carrying this mutation exhibited pigmentation and enteric nervous system defects similar to mice in which one Sox10 allele was deleted. However, despite presence of the mutant protein in Schwann cells and oligodendrocytes throughout development and in the adult, we found no phenotypic evidence for neurological defects in peripheral or central nervous systems. In the nervous system, the mutant Sox10 protein did not act in a dominant fashion but rather behaved like a hypomorph with very limited residual function. Our results question a strict genotype-phenotype correlation for SOX10 mutations and argue for the influence of additional factors including genetic background.


Subject(s)
SOXE Transcription Factors/metabolism , Alleles , Animals , DNA-Binding Proteins/genetics , Demyelinating Diseases/genetics , Disease Models, Animal , Genetic Association Studies , Heterozygote , High Mobility Group Proteins/genetics , Mice , Mice, Inbred C3H , Mutation , Phenotype , SOXE Transcription Factors/genetics , Transcription Factors/genetics
7.
J Neurochem ; 115(1): 131-41, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20646169

ABSTRACT

Development of the mouse CNS was reported to be normal in the absence of either Sox4 or its close relative Sox11 despite strong and widespread expression of both transcription factors. In this study, we show that combined absence of both Sox proteins in the mouse leads to severe hypoplasia of the developing spinal cord. Proliferation of neuroepithelial precursor cells in the ventricular zone was unaffected. These cells also acquired their correct positional identity. Both glial and neuronal progenitors were generated and neurons appeared in a similar spatiotemporal pattern as in the wild-type. Rates of cell death were however dramatically increased throughout embryogenesis in the double deficient spinal cord arguing that Sox4 and Sox11 are jointly and redundantly required for cell survival. The absence of pronounced proliferation, patterning, specification, and maturation defects furthermore indicates that the decreased cell survival is not a secondary effect of one of these events. We therefore conclude that the two Sox proteins directly function as pro-survival factors during spinal cord development in neural cell types.


Subject(s)
Cell Survival/physiology , SOXC Transcription Factors/physiology , Spinal Cord/growth & development , Animals , Cell Death/genetics , Cell Death/physiology , Cell Proliferation , Cell Size , Cell Survival/genetics , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/physiology , Gene Deletion , Immunohistochemistry , In Situ Hybridization , In Situ Nick-End Labeling , Mice , Mice, Inbred C57BL , Mice, Knockout , SOXC Transcription Factors/genetics , Spinal Cord/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...