Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Exp Bot ; 53(371): 1207-13, 2002 May.
Article in English | MEDLINE | ID: mdl-11971931

ABSTRACT

Elevated atmospheric pCO(2) increases the C-availability for plants and thus leads to a comparable increase in plant biomass production and nutrient demand. Arbuscular mycorrhizal fungi (AMF) are considered to play an important role in the nutrient uptake of plants as well as to be a significant C-sink. Therefore, an increased colonization of plant roots by AMF is expected under elevated atmospheric pCO(2). To test these hypotheses, Lolium perenne L. plants were grown from seeds in a growth chamber in pots containing a silica sand/soil mixture for 9 weeks with and without inoculation with Glomus intraradices (Schenck and Smith). The growth response of plants at two different levels of N fertilization (1.5 or 4.5 mM) combined with ambient (35 Pa) and elevated atmospheric pCO(2) (60 Pa) was compared. The inoculation with G. intraradices, the elevated atmospheric pCO(2) and the high N fertilization treatment all led to an increased plant biomass production of 16%, 20% and 49%, respectively. AMF colonization and high N fertilization increased the plant growth response to elevated atmospheric pCO(2); the plant growth response to high N fertilization was also increased by AMF colonization. The root/shoot ratio was reduced by high N fertilization or elevated atmospheric pCO(2), but was not affected by AMF colonization. The unchanged specific leaf area indicated that if AMF colonization represented an increased C-sink, this was fully covered by the plant. Elevated atmospheric pCO(2) strongly increased AMF colonization (60%) while the high N fertilization had a slightly negative effect. AMF colonization neither improved the N nor P nutrition status, but led to an improved total P uptake. The results underline the importance of AMF for the response of grassland ecosystems to elevated atmospheric pCO(2).


Subject(s)
Carbon Dioxide/pharmacology , Fungi/growth & development , Lolium/microbiology , Nitrogen/pharmacology , Plant Roots/microbiology , Biomass , Carbon/metabolism , Ecosystem , Lolium/drug effects , Lolium/growth & development , Nitrogen/metabolism , Phosphorus/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Shoots/drug effects , Soil Microbiology , Symbiosis
2.
J Exp Bot ; 51(348): 1289-97, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10937705

ABSTRACT

Trifolium repens L. was grown to test the following hypotheses: when P is deficient (i) N2 fixation decreases as a result of the plant's adaptation to the low N demand, regulated by an N feedback mechanism, and (ii) the decrease in the photosynthetic capacity of the leaves does not limit N2 fixation. Severe P deficiency prevented nodulation or stopped nodule growth when the P deficiency occurred after the plants had formed nodules. At low P, the proportion of whole-plant-N derived from symbiotic N2 fixation decreased, whereas specific N2 fixation increased and compensated partially for poor nodulation. Leaf photosynthesis was reduced under P deficiency due to low Vc,max and Jmax. Poor growth or poor performance of the nodules was not due to C limitation, because (i) the improved photosynthetic performance at elevated pCO2 had no effect on the growth and functioning of the nodules, (ii) starch accumulated in the leaves, particularly under elevated pCO2, and (iii) the concentration of WSC in the nodules was highest under P deficiency. Under severe P deficiency, the concentrations of whole-plant-N and leaf-N were the highest, indicating that the assimilation of N exceeded the amount of N required by the plant for growth. This was clearly demonstrated by a strong increase in asparagine concentrations in the roots and nodules under low P supply. This indicates that nodulation and the proportion of N derived from symbiotic N2 fixation are down-regulated by an N feedback mechanism.


Subject(s)
Fabaceae/metabolism , Nitrogen Fixation/physiology , Nitrogen/metabolism , Phosphorus/metabolism , Plants, Medicinal , Asparagine/analysis , Carbon Dioxide/metabolism , Fabaceae/chemistry , Fabaceae/growth & development , Photosynthesis , Symbiosis/physiology
3.
Plant Mol Biol ; 44(4): 477-85, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11197323

ABSTRACT

To gain insight into the molecular processes occurring in root nodule metabolism after stress, we used a mRNA differential display (DDRT-PCR) approach to identify cDNAs corresponding to genes whose expression is enhanced in nodules of decapitated Medicago truncatula plants. Two full-length cDNAs of plant origin were isolated (MTD1 and MTD2). Sequence analysis revealed that MTD1 is identical to an EST clone (accession number AW559774) expressed in roots of M. truncatula upon infection with Phytophthora medicaginis, while MTD2 is highly homologous to an Arabidopsis thaliana gene (accession number AL133292) coding for a RNA binding-like protein. The two mRNAs started to accumulate in root nodules at 4 h after plant decapitation and reached even higher transcript levels at 24 h from the imposition of the treatment. MTD1 and MTD2 mRNAs were mainly induced in nodules, with very little induction in roots. The abundance of the two transcripts did not change in response to other perturbations known to decrease nitrogenase activity, such as nitrate and Ar/O2 treatments. Our results suggest that MTD1 and MTD2 represent transcripts that accumulate locally in nodules and may be involved in changes in nodule metabolism in response to decapitation.


Subject(s)
Medicago sativa/genetics , Plant Roots/genetics , RNA, Messenger/metabolism , Amino Acid Sequence , Base Sequence , Blotting, Northern , DNA, Complementary/chemistry , DNA, Complementary/genetics , DNA, Plant/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Medicago sativa/growth & development , Molecular Sequence Data , Nitrogenase/metabolism , Plant Roots/growth & development , RNA, Messenger/genetics , Sequence Analysis, DNA , Stress, Mechanical , Symbiosis/genetics
4.
J Struct Biol ; 126(1): 59-71, 1999 Jun 01.
Article in English | MEDLINE | ID: mdl-10329489

ABSTRACT

It is unclear to what extent oxygen diffusion pathways through the cortex of the nitrogen-fixing zone of indeterminate nodules are liquid filled and whether a blockage of these pathways is involved in varying nodule oxygen permeability to control nitrogenase activity. We examined the proportion of water-filled intercellular spaces of lucerne (Medicago sativa L.) nodules with cryo-scanning electron microscopy. This technique allows for direct observation of water accumulation. Thirty percent of all intercellular spaces in the inner cortex of lucerne nodules were liquid filled. Decreasing the nodule oxygen permeability by detopping of the plant or by increasing the rhizospheric oxygen partial pressure to 80 kPa had no statistically significant effect on the water distribution in the intercellular spaces. Therefore, the hypothesis of a continuous aqueous diffusion barrier in the inner cortex could not be supported. The abundance of glycoproteins in intercellular spaces of the inner cortex was investigated with immunoelectron microscopy. No alteration due to detopping or after increase of the rhizospheric oxygen partial pressure was observed. Therefore, our results do not support the hypothesis of a short-term regulation of oxygen permeability by blockage of diffusion pathways through morphological changes in the cortex region of the nitrogen-fixing zone of lucerne nodules.


Subject(s)
Medicago sativa/ultrastructure , Cryoelectron Microscopy/methods , Extracellular Space , Freeze Fracturing , Image Processing, Computer-Assisted , Microscopy, Electron, Scanning/methods , Seeds/ultrastructure , Water
5.
Oecologia ; 112(1): 17-25, 1997 Sep.
Article in English | MEDLINE | ID: mdl-28307370

ABSTRACT

The extent of the response of plant growth to atmospheric CO2 enrichment depends on the availability of resources other than CO2. An important growth-limiting resource under field conditions is nitrogen (N). N may, therefore, influence the CO2 response of plants. The effect of elevated CO2 (60 Pa) partial pressure (pCO2) on the N nutrition of field-grown Lolium perenne swards, cultivated alone or in association with Trifolium repens, was investigated using free air carbon dioxide enrichment (FACE) technology over 3 years. The established grassland ecosystems were treated with two N fertilization levels and were defoliated at two frequencies. Under elevated pCO2, the above-ground plant material of the L. perenne monoculture showed a consistent and significant decline in N concentration which, in general, led to a lower total annual N yield. Despite the decline in the critical N concentration (minimum N concentration required for non-N-limited biomass production) under elevated pCO2, the index of N nutrition (ratio of actual N concentration and critical N concentration) was lower under elevated pCO2 than under ambient pCO2 in frequently defoliated L. perenne monocultures. Thus, we suggest that reduced N yield under elevated pCO2 was evoked indirectly by a reduction of plant-available N. For L. perenne grown in association with T. repens and exposed to elevated pCO2, there was an increase in the contribution of symbiotically fixed N to the total N yield of the grass. This can be explained by an increased apparent transfer of N from the associated N2-fixing legume species to the non-fixing grass. The total annual N yield of the mixed grass/legume swards increased under elevated pCO2. All the additional N yielded was due to symbiotically fixed N. Through the presence of an N2-fixing plant species more symbiotically fixed N was introduced into the system and consequently helped to overcome N limitation under elevated pCO2.

6.
Plant Physiol ; 112(2): 575-583, 1996 Oct.
Article in English | MEDLINE | ID: mdl-12226411

ABSTRACT

Symbiotic N2 fixation is one of the main processes that introduces N into terrestrial ecosystems. As such, it may be crucial for the sequestration of the extra C available in a world of continuously increasing atmospheric CO2 partial pressure (pCO2). The effect of elevated pCO2 (60 Pa) on symbiotic N2 fixation (15N-isotope dilution method) was investigated using Free-Air-CO2-Enrichment technology over a period of 3 years. Trifolium repens was cultivated either alone or together with Lolium perenne (a nonfixing reference crop) in mixed swards. Two different N fertilization levels and defoliation frequencies were applied. The total N yield increased consistently and the percentage of plant N derived from symbiotic N2 fixation increased significantly in T. repens under elevated pCO2. All additionally assimilated N was derived from symbiotic N2 fixation, not from the soil. In the mixtures exposed to elevated pCO2, an increased amount of symbiotically fixed N (+7.8, 8.2, and 6.2 g m-2 a-1 in 1993, 1994, and 1995, respectively) was introduced into the system. Increased N2 fixation is a competitive advantage for T. repens in mixed swards with pasture grasses and may be a crucial factor in maintaining the C:N ratio in the ecosystem as a whole.

7.
Plant Physiol ; 110(2): 539-545, 1996 Feb.
Article in English | MEDLINE | ID: mdl-12226202

ABSTRACT

To test the hypothesis of an indirect or direct involvement of carbon metabolites in the short-term regulation of nitrogenase activity, nodule O2 permeability was manipulated either by defoliation or by varying rhizosphere O2 partial pressure. In contrast to defoliation, a 50% reduction of the nodule O2 permeability, due to adapting nodules to 40 kPa O2, had no effect on nodule sucrose concentration. Likewise, total concentrations of other carbon metabolites such as fructose, starch, L-malate, and succinate tended to be differentially affected by the two treatments. Upon defoliation, carbon metabolites in roots responded in a manner similar to those in nodules. Sucrose concentration in nodules decreased significantly after the removal of 40% of the leaf area, which is known to have no effect on nitrogenase activity and O2 permeability. During regrowth after a 100% defoliation, nitrogenase activity could be increased at any time by elevating rhizospheric O2 partial pressure. Thus, during the entire growing cycle nitrogenase activity seems primarily oxygen limited. Changes in whole nodule sucrose pools after defoliation have to be viewed as secondary effects not necessarily linked to nodule activity. Whole-nodule carbon metabolites appear not to be determinants of nodule activity, either through direct metabolic involvement or through indirect effects such as triggering O2 permeability.

8.
Plant Physiol ; 103(3): 1009-1014, 1993 Nov.
Article in English | MEDLINE | ID: mdl-12231997

ABSTRACT

Previous studies have shown that nitrogenase activity decreases dramatically after defoliation, presumably because of an increase in the O2 diffusion resistance in the infected nodules. It is not known how this O2 diffusion resistance is regulated. The aim of this study was to test the hypothesis that current N2 fixation (ongoing flux of N2 through nitrogenase) is involved in the regulation of nitrogenase activity in white clover (Trifolium repens L. cv Ladino) nodules. We compared the nitrogenase activity of plants that were prevented from fixing N2 (by continuous exposure of their nodulated root system to an Ar:O2 [80:20] atmosphere) with that of plants allowed to fix N2 (those exposed to N2:O2, 80:20). Nitrogenase activity was determined as the amount of H2 evolved under Ar:O2. An open flow system was used. In experiment I, 6 h after complete defoliation and the continuous prevention of N2 fixation, nitrogenase activity was higher by a factor of 2 compared with that in plants allowed to fix N2 after leaf removal. This higher nitrogenase activity was associated with a lower O2 limitation (measured as the partial pressure of O2 required for highest nitrogenase activity). In experiment II, the nitrogenase activity of plants prevented from fixing N2 for 2 h before leaf removal showed no response to defoliation. The extent to which nitrogenase activity responded to defoliation was different in plants allowed to fix N2 and those that were prevented from doing so in both experiments. This leads to the conclusion that current N2 fixation is directly involved in the regulation of nitrogenase activity. It is suggested that an N feedback mechanism triggers such a response as a result of the loss of the plant's N sink strength after defoliation. This concept offers an alternative to other hypotheses (e.g. interruption of current photosynthesis, carbohydrate deprivation) that have been proposed to explain the immediate decrease in nitrogenase activity after defoliation.

9.
Plant Physiol ; 95(3): 797-803, 1991 Mar.
Article in English | MEDLINE | ID: mdl-16668056

ABSTRACT

Alfalfa (Medicago sativa L.) releases different flavonoids from seeds and roots. Imbibing seeds discharge 3',4',5,7-substituted flavonoids; roots exude 5-deoxy molecules. Many, but not all, of these flavonoids induce nodulation (nod) genes in Rhizobium meliloti. The dominant flavonoid released from alfalfa seeds is identified here as quercetin-3-O-galactoside, a molecule that does not induce nod genes. Low concentrations (1-10 micromolar) of this compound, as well as luteolin-7-O-glucoside, another major flavonoid released from germinating seeds, and the aglycones, quercetin and luteolin, increase growth rate of R. meliloti in a defined minimal medium. Tests show that the 5,7-dihydroxyl substitution pattern on those molecules was primarily responsible for the growth effect, thus explaining how 5-deoxy flavonoids in root exudates fail to enhance growth of R. meliloti. Luteolin increases growth by a mechanism separate from its capacity to induce rhizobial nod genes, because it still enhanced growth rate of R. meliloti lacking functional copies of the three known nodD genes. Quercetin and luteolin also increased growth rate of Pseudomonas putida. They had no effect on growth rate of Bacillus subtilis or Agrobacterium tumefaciens, but they slowed growth of two fungal pathogens of alfalfa. These results suggest that alfalfa can create ecochemical zones for controlling soil microbes by releasing structurally different flavonoids from seeds and roots.

10.
Plant Physiol ; 95(3): 804-7, 1991 Mar.
Article in English | MEDLINE | ID: mdl-16668057

ABSTRACT

Traces of luteolin, an important rhizobial nod gene inducer in Rhizobium meliloti, are released by alfalfa (Medicago sativa L.) seeds, but most luteolin in the seed exudate is conjugated as luteolin-7-O-glucoside (L7G). Processes affecting the production of luteolin from L7G in seed exudate are poorly understood. Results from this study establish that (a) seed coats are the primary source of flavonoids, including L7G, in seed exudate; (b) these flavonoids exist in seeds before imbibition; and (c) both the host plant and the symbiotic R. meliloti probably can hydrolyze L7G to luteolin. Glycolytic cleavage of L7G is promoted by glucosidase activity released from sterile seeds during the first 4 hours of imbibition. Thus, L7G from imbibing alfalfa seeds may serve as a source of the nod-gene-inducing luteolin and thereby facilitate root nodulation by R. meliloti.

11.
J Bacteriol ; 172(5): 2769-73, 1990 May.
Article in English | MEDLINE | ID: mdl-2332406

ABSTRACT

Transcription of the nodulation genes nodABC in Rhizobium meliloti requires a plant flavonoid signal and nodD, a family of bacterial regulatory genes (nodD1, nodD2, and nodD3). Results from this study show that all previously identified nod gene inducers released by alfalfa seeds and roots induced nodABC-lacZ transcription in R. meliloti containing extra copies of nodD1, but only 4,4'-dihydroxy-2'-methoxychalcone gave high levels of induction with extra copies of nodD2. While mixtures of the methoxychalcone and luteolin showed a positive synergism with extra NodD1 protein, they apparently competed for binding to the NodD2 protein.


Subject(s)
Acyltransferases , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Flavonoids/metabolism , Gene Expression Regulation, Bacterial , Genes, Bacterial , Genes, Regulator , Medicago sativa/physiology , N-Acetylglucosaminyltransferases , Rhizobium/genetics , Transcription, Genetic , Flavonoids/pharmacology , Genotype , Luteolin , Transcription, Genetic/drug effects
12.
Plant Physiol ; 92(1): 116-22, 1990 Jan.
Article in English | MEDLINE | ID: mdl-16667231

ABSTRACT

Flavonoid signals from alfalfa (Medicago sativa L.) seed and root exudates induce transcription of nodulation (nod) genes in Rhizobium meliloti. The flavone luteolin previously was isolated from alfalfa seeds by other workers and identified as the first nod gene inducer for R. meliloti. Our recent study of ;Moapa 69' alfalfa root exudates found no luteolin but did identify three other nod gene inducers: 4,4'-dihydroxy-2'-methoxychalcone, 4',7-dihydroxyflavone, and 4',7-dihydroxyflavanone. The goal of the current study was to identify and quantify nod gene-inducing flavonoids that may influence Rhizobium populations around a germinating alfalfa seed. Aqueous rinses of Moapa 69 alfalfa seeds were collected and assayed for induction of a nodABC-lacZ fusion in R. meliloti. During the first 4 hours of imbibition, total nod gene-inducing activity was released from seeds at 100-fold higher rates than from roots of 72-hour-old seedlings. Five flavonoids were purified and identified by spectroscopic analyses (ultraviolet/visible absorbance, proton nuclear magnetic resonance, and mass spectroscopy) and comparison with authentic standards. Two very active nod gene-inducing flavonoids, chrysoeriol (3'-methoxyluteolin) and luteolin, were identified in seed rinses. Luteolin required a higher concentration (18 nanomolar) than chrysoeriol (5 nanomolar) for half-maximum induction of nodABC-lacZ in R. meliloti, and both were less active than 4,4'-dihydroxy-2'-methoxychalcone (2 nanomolar) from root exudates. Seeds exuded three other luteolin derivatives: luteolin-7-O-glucoside, 5-methoxyluteolin, and 3',5-dimethoxyluteolin. Their combined quantities were 24-fold greater than that of luteolin plus chrysoeriol. Most nod gene-inducing activity of these luteolin derivatives apparently is associated with degradation to luteolin and chrysoeriol. However, their presence in large quantities suggests that they may contribute significantly to nod gene-inducing activity in the soil. These results indicate the importance of germinating seeds as a source of nod gene-inducing flavonoids and emphasize the quantitative and qualitative differences in those compounds around the seed and root.

13.
Plant Physiol ; 91(3): 1138-42, 1989 Nov.
Article in English | MEDLINE | ID: mdl-16667124

ABSTRACT

Alfalfa (Medicago sativa L.) seeds and roots can create complex rhizosphere effects by releasing flavonoids that induce nodulation (nod) genes in Rhizobium meliloti. Previous reports identified luteolin and 4,4'-dihydroxy-2'-methoxychalcone as strong inducers that are released from seeds and roots, respectively, and 4',7-dihydroxyflavone and 4',7-dihydroxyflavanone as weaker inducers which are exuded by roots. As a first step toward identifying flavonoid interactions that may occur in the rhizosphere, combinations of these molecules were tested for transcriptional effects on a nodABC-lacZ fusion in R. meliloti. At low concentrations (e.g. 8.4 nanomolar), interactions of the three nod gene inducers from root exudate were additive. When the strong inducers 4,4'-dihydroxy-2'-methoxychalcone and luteolin were present separately at higher concentrations (e.g. 21 nanomolar), their effect could be decreased significantly by the weaker inducers 4',7-dihydroxyflavone and 4',7-dihydroxyflavanone. In contrast, when low concentrations of luteolin from seed rinses and 4,4'-dihydroxy-2'-methoxychalcone from root exudate were present together, they produced synergistic increases in nod gene transcription. Tests with mixtures of the three nod gene inducers from root exudate indicated that alfalfa seedlings might easily decrease the strong inductive effect of the chalcone by releasing modest amounts of the weaker inducers. In addition, mixtures of luteolin and the nod gene inducers in root exudate suggested that interactions between nod gene inducers from seeds and roots may create a zone highly favorable to root nodule formation near the top of the primary root.

14.
Plant Physiol ; 91(3): 842-7, 1989 Nov.
Article in English | MEDLINE | ID: mdl-16667146

ABSTRACT

Flavonoid signals from alfalfa (Medicago sativa L.) induce transcription of nodulation (nod) genes in Rhizobium meliloti. Previous investigations identified the flavone luteolin as an active inducer in alfalfa seed extracts, but the nature of nod inducers released from roots has not been reported. Root exudate from 3-day-old alfalfa seedlings was purified and then assayed for biological activity with a nodABC-lacZ fusion in R. meliloti. Indentities of major nod inducers were established by spectroscopic analyses (ultraviolet/visible, proton nuclear magnetic resonance, and mass spectroscopy) and comparison with authentic standards. Major nod inducers, which were identified as 4',7-dihydroxyflavone, 4'-7-dihydroxyflavanone, and 4,4'-dihydroxy-2'-methoxychalcone, were released from seedling roots at 54, 22, and 20 picomole.plant(-1).day(-1), respectively. Luteolin was not found in these root exudates. The 4,4'-dihydroxy-2'-methoxychalcone induced nod genes at a concentration one order of magnitude lower than luteolin and is the first naturally released chalcone reported to have this function. Moderate and weak nod-inducing activity was associated, respectively, with 4',7-dihydroxyflavone and 4',7-dihydroxyflavanone.

SELECTION OF CITATIONS
SEARCH DETAIL
...