Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 7: 152-156, 2016 Jun.
Article in English | MEDLINE | ID: mdl-28795116

ABSTRACT

Before using nanoparticles for therapeutic applications, it is necessary to comprehensively investigate nanoparticle effects, both in vitro and in vivo. In the associated research article [1] we generate multimodal polymeric nanoparticles functionalized with an antibody, that are designed to deliver an anti-oxidant to astrocytes. Here we provide additional data demonstrating the effects of the nanoparticle preparations on an indicator of oxidative stress in an immortalized Müller cell line in vitro. We provide data demonstrating the use of nanoscale secondary ion mass spectroscopy (NanoSIMS) to identify specific ions in bulk dried NP. NanoSIMS is also used to visualize 40Ca microdomains in the z dimension of optic nerve that has been subjected to a partial optic nerve transection. The associated article [1] describes the use of NanoSIMS to quantify 40Ca microdomains in optic nerve from animals treated with various nanoparticle preparations and provides further interpretation and discussion of the findings.

2.
J Vis Exp ; (97)2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25867757

ABSTRACT

Red/near-infrared light therapy (R/NIR-LT), delivered by laser or light emitting diode (LED), improves functional and morphological outcomes in a range of central nervous system injuries in vivo, possibly by reducing oxidative stress. However, effects of R/NIR-LT on oxidative stress have been shown to vary depending on wavelength or intensity of irradiation. Studies comparing treatment parameters are lacking, due to absence of commercially available devices that deliver multiple wavelengths or intensities, suitable for high through-put in vitro optimization studies. This protocol describes a technique for delivery of light at a range of wavelengths and intensities to optimize therapeutic doses required for a given injury model. We hypothesized that a method of delivering light, in which wavelength and intensity parameters could easily be altered, could facilitate determination of an optimal dose of R/NIR-LT for reducing reactive oxygen species (ROS) in vitro. Non-coherent Xenon light was filtered through narrow-band interference filters to deliver varying wavelengths (center wavelengths of 440, 550, 670 and 810 nm) and fluences (8.5x10(-3) to 3.8x10(-1) J/cm2) of light to cultured cells. Light output from the apparatus was calibrated to emit therapeutically relevant, equal quantal doses of light at each wavelength. Reactive species were detected in glutamate stressed cells treated with the light, using DCFH-DA and H2O2 sensitive fluorescent dyes. We successfully delivered light at a range of physiologically and therapeutically relevant wavelengths and intensities, to cultured cells exposed to glutamate as a model of CNS injury. While the fluences of R/NIR-LT used in the current study did not exert an effect on ROS generated by the cultured cells, the method of light delivery is applicable to other systems including isolated mitochondria or more physiologically relevant organotypic slice culture models, and could be used to assess effects on a range of outcome measures of oxidative metabolism.


Subject(s)
Oxidative Stress/radiation effects , Phototherapy/methods , Animals , Cells, Cultured , Infrared Rays , Lasers , Mitochondria/metabolism , Mitochondria/radiation effects , Oxidation-Reduction , Oxidative Stress/physiology , PC12 Cells , Rats , Reactive Oxygen Species/metabolism , Retina/cytology , Retina/radiation effects , Xenon/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...