Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35014267

ABSTRACT

For the practical application of triplet-triplet annihilation-based photon upconversion (TTA-UC), the development of rigid, transparent, air-stable, and moldable materials with a high TTA-UC efficiency remains a challenging issue. In addition to the noncovalent introduction of ionic liquid emitters into the epoxy network, we covalently introduce emitters with polymerization sites to increase the emitter concentration to 35.6 wt %. A TTA-UC quantum yield ΦUC of 5.7% (theoretical maximum: 50%) or a TTA-UC efficiency ηUC of 11.4% (theoretical maximum: 100%) is achieved, which is the highest value ever achieved for a rigid polymer material. More importantly, the high emitter concentration speeds up the triplet diffusion and suppresses the back energy transfer from the emitter to sensitizer so that the sensitized emitter triplet can be effectively utilized for TTA. The generality of our finding is also confirmed for epoxy resins of similar emitter unit concentrations without the ionic liquid. This work provides important design guidelines for achieving highly efficient TTA-UC in rigid solid materials, which has been very difficult to achieve in the past. Furthermore, the solid-state TTA-UC exhibits high air stability, reflecting the high oxygen barrier performance of epoxy resins. The high moldability of epoxy resins allows the construction of upconversion materials with complex geometries at nano- to macroscopic scales.

2.
ACS Appl Mater Interfaces ; 13(11): 13676-13683, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33656328

ABSTRACT

It remains challenging to achieve efficient and air-stable photon upconversion (UC) in rigid, technologically valuable transparent films. Here, we report the first example of epoxy resins that show an air-stable and efficient triplet-triplet annihilation (TTA)-based UC. Epoxy resins are thermally cross-linked polymers widely used as coating and sealing materials in actual devices. To achieve efficient TTA-UC in rigid epoxy films, it is essential to execute both the triplet sensitization and triplet exciton diffusion processes without relying on molecular diffusion. This requires homogeneously dispersing emitter molecules without aggregation in three-dimensionally cross-linked rigid polymer networks at a high concentration (ca. 1000 mM) such that the inter-emitter distance is less than 1 nm, where dexter energy transfer can occur. This difficult requirement is solved by employing an ionic liquid emitter that consists of 9,10-diphenylanthracene sulfonate and lipophilic phosphonium ions bearing long alkyl chains. The obtained epoxy resins show a high TTA-UC efficiency (ηUC = 3.8%) and low threshold excitation intensity (Ith = 40 mW cm-2) in air. These UC parameters are achieved by virtue of a very high sensitizer-to-emitter triplet energy-transfer efficiency (92.8%) and a significantly long emitter triplet lifetime (17.8 ms) that reflect the high emitter concentration and the rigid chromophore environment, respectively. The bulk transparent upconverting resins can be prepared in air and function in air, which opens a new avenue toward a wide range of real-world applications.

3.
Chem Commun (Camb) ; 56(51): 7017-7020, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32441716

ABSTRACT

Upconverting near-infrared (NIR) light (λ > 700 nm) to violet light (λ < 450 nm) based on triplet-triplet annihilation (TTA) is achieved for the first time by developing a silyl-substituted anthracene violet emitter and its sensitization by an osmium complex showing a singlet-to-triplet (S-T) absorption in the NIR range.

4.
Chem Asian J ; 14(10): 1723-1728, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30600914

ABSTRACT

Molecular self-assembly is a powerful means to construct nanoscale materials with advanced photophysical properties. Although the protection of the photo-excited states from oxygen quenching is a critical issue, it still has been in an early phase of development. In this work, we demonstrate that a simple and typical molecular design for aqueous supramolecular assembly, modification of the chromophoric unit with hydrophilic oligo(ethylene glycol) chains and hydrophobic alkyl chains, is effective to avoid oxygen quenching of triplet-triplet annihilation-based photon upconversion (TTA-UC). While a TTA-UC emission is completely quenched when the donor and acceptor are molecularly dispersed in chloroform, their aqueous co-assemblies exhibit a clear upconverted emission in air-saturated water even under extremely low chromophore concentrations down to 40 µm. The generalization of this nano-encapsulation approach offers new functions and applications using oxygen-sensitive species for supramolecular chemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...