Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Biochemistry (Mosc) ; 63(6): 671-84, 1998 Jun.
Article in English | MEDLINE | ID: mdl-9668207

ABSTRACT

The three-dimensional structures of four mutant E. coli inorganic pyrophosphatases (PPases) with single Asp-->Asn substitutions at positions 42, 65, 70, and 97 were solved at 1.95, 2.15, 2.10, and 2.20 A resolution, respectively. Asp-42-->Asn and Asp-65-->Asn mutant PPases were prepared as complexes with sulfate--a structural analog of phosphate, the product of enzymatic reaction. A comparison of mutant enzymes with native PPases revealed that a single amino acid substitution changes the position of the mutated residue as well as the positions of several functional groups and some parts of a polypeptide chain. These changes are responsible for the fact that mutant PPases differ from the native ones in their catalytic properties. The sulfate binding to the mutant PPase active site causes molecular asymmetry, as shown for the native PPase earlier. The subunit asymmetry is manifested in different positions of sulfate and several functional groups, as well as changes in packing of hexamers in crystals and in cell parameters.


Subject(s)
Asparagine/chemistry , Aspartic Acid/chemistry , Escherichia coli/enzymology , Pyrophosphatases/chemistry , Amino Acid Substitution , Inorganic Pyrophosphatase , Protein Conformation , X-Ray Diffraction
2.
Biochemistry (Mosc) ; 63(5): 592-9, 1998 May.
Article in English | MEDLINE | ID: mdl-9632898

ABSTRACT

The three-dimensional structures of E. coli inorganic pyrophosphatase (PPase) and its complexes with Mn2+ in a high affinity site and with Mg2+ in high and low affinity sites determined by authors in 1994-1996 at 1.9-2.2 A resolution are compared. Metal ion binding initiates the shifts of alpha-carbon atoms and of functional groups and rearrangement of non-covalent interaction system of hexameric enzyme molecule. As a result, the apoPPase with six equal subunits turns after Mg2+ binding into the structure with three types of subunits distinguished by structure and occupance of the low affinity Mg2+ site. Induced asymmetry reflects the subunit interactions and cooperativity between Mg2+ binding sites. These molecular rearrangements are structural basis to account for special features of the enzyme behavior and to propose one of the pathways for enzymatic activity regulation of constitutive PPases in vivo.


Subject(s)
Escherichia coli/enzymology , Pyrophosphatases/chemistry , Pyrophosphatases/metabolism , Apoenzymes/chemistry , Apoenzymes/metabolism , Calcium/metabolism , Catalytic Domain , Crystallography, X-Ray , Inorganic Pyrophosphatase , Magnesium/metabolism , Manganese/metabolism , Models, Molecular , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
3.
J Mol Biol ; 276(3): 603-23, 1998 Feb 27.
Article in English | MEDLINE | ID: mdl-9551100

ABSTRACT

The X-ray structure of tryptophanase (Tnase) reveals the interactions responsible for binding of the pyridoxal 5'-phosphate (PLP) and atomic details of the K+ binding site essential for catalysis. The structure of holo Tnase from Proteus vulgaris (space group P2(1)2(1)2(1) with a = 115.0 A, b = 118.2 A, c = 153.7 A) has been determined at 2.1 A resolution by molecular replacement using tyrosine phenol-lyase (TPL) coordinates. The final model of Tnase, refined to an R-factor of 18.7%, (Rfree = 22.8%) suggests that the PLP-enzyme from observed in the structure is a ketoenamine. PLP is bound in a cleft formed by both the small and large domains of one subunit and the large domain of the adjacent subunit in the so-called "catalytic" dimer. The K+ cations are located on the interface of the subunits in the dimer. The structure of the catalytic dimer and mode of PLP binding in Tnase resemble those found in aspartate amino-transferase, TPL, omega-amino acid pyruvate aminotransferase, dialkylglycine decarboxylase (DGD), cystathionine beta-lyase and ornithine decarboxylase. No structural similarity has been detected between Tnase and the beta 2 dimer of tryptophan synthase which catalyses the same beta-replacement reaction. The single monovalent cation binding site of Tnase is similar to that of TPL, but differs from either of those in DGD.


Subject(s)
Protein Folding , Protein Structure, Secondary , Proteus vulgaris/enzymology , Tryptophanase/chemistry , Tryptophanase/metabolism , Amino Acid Sequence , Binding Sites , Catalysis , Computer Simulation , Crystallography, X-Ray/methods , Escherichia coli , Macromolecular Substances , Models, Molecular , Molecular Sequence Data , Potassium/metabolism , Pyridoxal Phosphate/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Software , Thermodynamics
4.
Biochemistry ; 36(25): 7754-60, 1997 Jun 24.
Article in English | MEDLINE | ID: mdl-9201917

ABSTRACT

Crystalline holo inorganic pyrophosphatase from Escherichia coli was grown in the presence of 250 mM MgCl2. The crystal structure has been solved by Patterson search techniques and refined to an R-factor of 17.6% at 1.9 A resolution. The upper estimate of the root-mean-square error in atomic positions is 0.26 A. These crystals belong to space group P3(2)21 with unit cell dimensions a = b = 110.27 A and c = 78.17 A. The asymmetric unit contains a trimer of subunits, i.e., half of the hexameric molecule. In the central cavity of the enzyme molecule, three Mg2+ ions, each shared by two subunits of the hexamer, are found. In the active sites of two crystallographically independent subunits, two Mg2+ ions are bound. The second active site Mg2+ ion is missing in the third subunit. A mechanism of catalysis is proposed whereby a water molecule activated by a Mg2+ ion and Tyr 55 play essential roles.


Subject(s)
Escherichia coli/enzymology , Pyrophosphatases/chemistry , Binding Sites , Crystallography, X-Ray , Hydrolysis , Inorganic Pyrophosphatase , Models, Chemical , Protein Binding
5.
J Mol Biol ; 264(1): 152-61, 1996 Nov 22.
Article in English | MEDLINE | ID: mdl-8950274

ABSTRACT

Haemoglobins have the ability to discriminate between oxygen and other diatomic molecules. To further understanding of this process the X-ray crystal structures of carbonmonoxy and nitrosyl-leghaemoglobin have been determined at 1.8 A resolution. The ligand geometry is discussed in detail and the controversial issue of bent versus linear carbon monoxide binding is addressed. The bond angle of 160 degrees for CO-leghaemoglobin is in conflict with recent spectroscopy results on myoglobin but is consistent with angles obtained for myoglobin X-ray crystal structures. In contrast to the numerous carbon monoxide studies, very little stereochemical information is available for the nitric oxide adduct of haemoglobin. This is provided by the X-ray structure of NO-leghaemoglobin, which conforms to expected geometry with an Fe-NO angle of 147 degrees and a lengthened iron-proximal histidine bond. Thus crystallographic evidence is given for the predicted weakening of this bond on the binding of nitric oxide.


Subject(s)
Carbon Monoxide/metabolism , Leghemoglobin/metabolism , Nitric Oxide/metabolism , Binding Sites , Carbon Monoxide/chemistry , Crystallography, X-Ray , Electrochemistry , Fabaceae/metabolism , Heme/chemistry , Kinetics , Leghemoglobin/chemistry , Ligands , Models, Molecular , Molecular Structure , Nitric Oxide/chemistry , Plants, Medicinal , Protein Binding , Protein Structure, Secondary
6.
Eur J Biochem ; 239(1): 220-8, 1996 Jul 01.
Article in English | MEDLINE | ID: mdl-8706712

ABSTRACT

The three-dimensional structure of the manganese-phosphate complex of inorganic pyrophosphatase from Saccharomyces cerevisiae has been refined to an R factor of 19.0% at 2.4-A resolution. X-ray data were collected from a single crystal using an imaging plate scanner and synchrotron radiation. There is one dimeric molecule in the asymmetric unit. The upper estimate of the root-mean-square coordinate error is 0.4 A using either the delta A plot or the superposition of the two crystallographically independent subunits. The good agreement between the coordinates of the two subunits, which were not subjected to non-crystallographic symmetry restraints, provides independent validation of the structure analysis. The active site in each subunit contains four manganese ions and two phosphates. The manganese ions are coordinated by the side chains of aspartate and glutamate residues. The phosphate groups, which were identified on the basis of their local stereochemistry, interact either directly or via water molecules with manganese ions and lysine, arginine, and tyrosine side chains. The phosphates are bridged by two of the manganese ions. The outer phosphate is exposed to solvent. The inner phosphate is surrounded by all four manganese ions. The ion-binding sites are related to the order of binding previously established from kinetic studies. A hypothesis for the transition state of the catalytic reaction is put forward.


Subject(s)
Manganese/metabolism , Phosphates/metabolism , Pyrophosphatases/chemistry , Saccharomyces cerevisiae/enzymology , Crystallography, X-Ray , Hydrolysis , Inorganic Pyrophosphatase , Protein Conformation , Protein Folding , Pyrophosphatases/isolation & purification , Pyrophosphatases/metabolism , Substrate Specificity
7.
FEBS Lett ; 377(1): 44-6, 1995 Dec 11.
Article in English | MEDLINE | ID: mdl-8543015

ABSTRACT

Further refinement of X-ray data on Escherichia coli inorganic pyrophosphatase [Oganessyan et al. (1994) FEBS Lett. 348, 301-304] to 2.2 A reveals a system of noncovalent interactions involving Tyr55 and Tyr141 in the active site. The pKa for one of the eight Tyr residues in wild-type pyrophosphatase is as low as 9.1 and further decreases to 8.1 upon Mg2+ binding, generating characteristic changes in the absorption spectrum. These effects are lost in a Y55F but not in a Y141F variant. It is suggested that the lower-affinity site for Mg2+ in the enzyme is formed by Tyr55 and Asp70, which are in close proximity in the apo-enzyme structure.


Subject(s)
Escherichia coli/enzymology , Magnesium/pharmacology , Pyrophosphatases/metabolism , Binding Sites , Crystallography, X-Ray , Enzyme Activation/drug effects , Hydrogen-Ion Concentration , Inorganic Pyrophosphatase , Magnesium/metabolism , Molecular Structure , Pyrophosphatases/chemistry , Recombinant Proteins , Spectrophotometry , Tyrosine/chemistry
8.
J Mol Biol ; 251(1): 104-15, 1995 Aug 04.
Article in English | MEDLINE | ID: mdl-7643380

ABSTRACT

The leghaemoglobins have oxygen affinities 11 to 24 times higher than that of sperm whale myoglobin, due mainly to higher rates of association. To find out why, we have determined the structures of deoxy- and oxy-leghaemoglobin II of the lupin at 1.7 A resolution. Results confirm the general features found in previous X-ray analyses of this protein. The unique feature that has now emerged is the rotational freedom of the proximal histidine. In deoxy-leghaemoglobin the imidazole oscillates between two alternative orientations, eclipsing either the lines N1-N3 or N2-N4 of the porphyrin; in oxy-leghaemoglobin it is fixed in a staggered orientation. The iron atom moves from a position 0.30 A from the plane of the pyrrole nitrogen atoms in deoxy- to a position in the plane in oxy-leghaemoglobin while the Fe- bond distance remains constant at 2.02 A. The Fe-O-O angle is 152 degrees, as in human haemoglobin. The oxygen is hydrogen-bonded to the distal histidine at N epsilon 2-O1 and N epsilon 2-O2 distance of 2.95 A and 2.68 A, respectively. The porphyrin is ruffled equally in deoxy- and oxy-leghaemoglobins, due to rotations of the pyrrols about the N-Fe-N bonds, causing the methine bridges to deviate by up to 0.32 A from the mean porphyrin plane. The only feature capable of accounting for the high on-rate of the reaction with oxygen are the mobilities of the proximal histidine and distal histidine residues in deoxy-leghaemoglobin. The eclipsed positions of the proximal histidine in deoxy-leghaemoglobin maximize steric hindrance with the porphyrin nitrogen atoms and minimize pi-->p electron donation, while its staggered position in oxy-leghaemoglobin reverses both these effects. Together with the oscillation of the imidazole between the two orientations, these two factors may reduce the activation energy for the reaction of leghaemoglobin with oxygen. The distal histidine is in a fixed position in the haem pocket in the crystal, but must be swinging in and out of the pocket at a high rate in solution to allow the oxygen to enter.


Subject(s)
Fabaceae/chemistry , Leghemoglobin/analogs & derivatives , Leghemoglobin/chemistry , Leghemoglobin/metabolism , Plants, Medicinal , Crystallography, X-Ray , Globins/chemistry , Models, Molecular , Oxidation-Reduction , Oxygen/chemistry , Oxygen/metabolism , Protein Conformation
9.
FEBS Lett ; 348(3): 301-4, 1994 Jul 18.
Article in English | MEDLINE | ID: mdl-8034059

ABSTRACT

An E. coli inorganic pyrophosphatase overproducer and a method for a large-scale production of the homogeneous enzyme are described. The inorganic pyrophosphatase was crystallized in the form containing one subunit of a homohexameric molecule per asymmetric unit: space group R32, a = 110.4 A, c = 76.8 A. The electron density map to 2.5 A resolution phased with Eu- and Hg-derivatives (figure of merit, = 0.51) was improved by the solvent flattening procedure ( = 0.77). The course of the polypeptide chain and the secondary structure elements, intersubunit contacts and positions of the active sites were characterized. Homology with S. cerevisiae inorganic pyrophosphatase structure was found.


Subject(s)
Crystallography, X-Ray , Escherichia coli/enzymology , Pyrophosphatases/chemistry , Binding Sites , Crystallization , Inorganic Pyrophosphatase , Molecular Structure , Protein Structure, Secondary , Recombinant Proteins/chemistry
10.
J Mol Biol ; 236(3): 759-85, 1994 Feb 25.
Article in English | MEDLINE | ID: mdl-8114093

ABSTRACT

Three-dimensional crystal structures of holo (ternary complex enzyme-NAD-azide) and apo NAD-dependent dimeric formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 have been refined to R factors of 11.7% and 14.8% at 2.05 and 1.80 A resolution, respectively. The estimated root-mean-square error in atomic co-ordinates is 0.11 A for holo and 0.18 A for apo. X-ray data were collected from single crystals using an imaging plate scanner and synchrotron radiation. In both crystal forms there is a dimer in the asymmetric unit. Both structures show essentially 2-fold molecular symmetry. NAD binding causes movement of the catalytic domain and ordering of the C terminus, where a new helix appears. This completes formation of the enzyme active centre in holo FDH. NAD is bound in the cleft separating the domains and mainly interacts with residues from the co-enzyme binding domain. In apo FDH these residues are held in essentially the same conformation by water molecules occupying the NAD binding region. An azide molecule is located near the point of catalysis, the C4 atom of the nicotinamide moiety of NAD, and overlaps with the proposed formate binding site. There is an extensive channel running from the active site to the protein surface and this is supposed to be used by substrate to reach the active centre after NAD has already bound. The structure of the active site and a hypothetical catalytic mechanism are discussed. Sequence homology of FDH with other NAD-dependent formate dehydrogenases and some D-specific dehydrogenases is discussed on the basis of the FDH three-dimensional structure.


Subject(s)
Formate Dehydrogenases/chemistry , Protein Conformation , Protein Structure, Secondary , Pseudomonas/enzymology , Amino Acid Sequence , Apoenzymes/chemistry , Apoenzymes/metabolism , Binding Sites , Crystallography, X-Ray/methods , Formate Dehydrogenases/metabolism , Macromolecular Substances , Models, Molecular , Molecular Sequence Data , NAD/metabolism
11.
J Mol Biol ; 235(2): 783-6, 1994 Jan 14.
Article in English | MEDLINE | ID: mdl-8289300

ABSTRACT

Crystals of Proteus vulgaris holotryptophanase have been grown by the hanging-drop technique using polyethylene glycol 4000 as precipitant in the presence of monovalent cations K+ or Cs+. Orthorhombic crystals (P2(1)2(1)2(1)) grown with Cs+ have unit cell parameters a = 115.0 A, b = 118.2 A and c = 153.7 A and diffract to 1.8 A. There are four subunits of the tetrameric molecule in the asymmetric unit. Native data have been collected to 2.5 A resolution. The 3.4 A data were collected from tetragonal crystals of Escherichia coli holotryptophanase grown under conditions described by Kawata et al. (1991). The molecular replacement solution for this crystal form has been found using tyrosine phenol-lyase coordinates. The correct enantiomorph is P4(3)2(1)2. There are two subunits in the asymmetric unit.


Subject(s)
Escherichia coli/enzymology , Proteus vulgaris/enzymology , Tryptophanase/chemistry , Crystallization , Crystallography, X-Ray
12.
J Mol Biol ; 234(2): 493-5, 1993 Nov 20.
Article in English | MEDLINE | ID: mdl-8230228

ABSTRACT

The structural protein, gene product 9 (gp9), of bacteriophage T4 controls baseplate expansion at the first steps of virus attachment onto its host bacterial cell with subsequent tail contraction. Gp9, which has an M(r) of 30.8 kDa and contains 287 amino acids, has been purified from a recombinant Escherichia coli strain and crystallized at 25 degrees C using the hanging drop vapor diffusion method at pH 4.0 with ammonium sulfate as precipitant. The crystals of gp9 belong to the space group R32 with hexagonal cell dimensions a = b = 86.5 A and c = 156.2 A and diffract X-rays to at least 2.7 A. There is one molecule per asymmetric unit.


Subject(s)
Bacteriophage T4/chemistry , Genes, Viral , Viral Proteins/chemistry , Bacteriophage T4/genetics , Crystallization , Crystallography, X-Ray , Viral Proteins/genetics
13.
Biochemistry ; 32(16): 4195-206, 1993 Apr 27.
Article in English | MEDLINE | ID: mdl-7916622

ABSTRACT

Tyrosine phenol-lyase (EC 4.1.99.2) from Citrobacter freundii has been cloned and the primary sequence deduced from the DNA sequence. From the BrCN digest of the NaBH4-reduced holoenzyme, five peptides were purified and sequenced. The amino acid sequences of the peptides agreed with the corresponding parts of the tyrosine phenol-lyase sequence obtained from the gene structure. K257 is the pyridoxal 5'-phosphate binding residue. Assisted by the sequence data, the crystal structure of apotyrosine phenol-lyase, a pyridoxal 5'-phosphate-dependent enzyme, has been refined to an R-factor of 16.2% at 2.3-A resolution using synchrotron radiation diffraction data. The tetrameric molecule has 222 symmetry, with one of the axes coincident with the crystallographic 2-fold symmetry axis of the crystal which belongs to the space group P2(1)2(1)2 with a = 76.0 A, b = 138.3 A, and c = 93.5 A. Each subunit comprises 14 alpha-helices and 16 beta-strands, which fold into a small and a large domain. The coenzyme-binding lysine residue is located at the interface between the large and small domains of one subunit and the large domain of a crystallographically related subunit. The fold of the large, pyridoxal 5'-phosphate binding domain and the location of the active site are similar to that found in aminotransferases. Most of the residues which participate in binding of pyridoxal 5'-phosphate in aminotransferases are conserved in the structure of tyrosine phenol-lyase. Two dimers of tyrosine phenol-lyase, each of which has a domain architecture similar to that found in aspartate aminotransferases, are bound together through a hydrophobic cluster in the center of the molecule and intertwined N-terminal arms.


Subject(s)
Citrobacter freundii/enzymology , Protein Structure, Secondary , Tyrosine Phenol-Lyase/chemistry , Tyrosine Phenol-Lyase/genetics , Amino Acid Sequence , Apoenzymes/chemistry , Base Sequence , Binding Sites , Citrobacter/enzymology , Citrobacter freundii/genetics , Cloning, Molecular , Genes, Bacterial , Genomic Library , Macromolecular Substances , Models, Molecular , Models, Structural , Molecular Sequence Data , Peptide Fragments/chemistry , Recombinant Proteins/chemistry , Sequence Homology, Amino Acid
14.
Eur J Biochem ; 206(2): 441-52, 1992 Jun 01.
Article in English | MEDLINE | ID: mdl-1597184

ABSTRACT

The ternary complex of NAD-dependent formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 (enzyme-NAD-azide) has been crystallised in the space group P2(1)2(1)2(1) with cell dimensions a = 11.60 nm, b = 11.33 nm, c = 6.34 nm. There is 1 dimeric molecule/asymmetric unit. An electron density map was calculated using phases from multiple isomorphous replacement at 0.30 nm resolution. Four heavy atom derivatives were used. The map was improved by solvent flattening and molecular averaging. The atomic model, including 2 x 393 amino acid residues, was refined by the CORELS and PROLSQ packages using data between 1.0 nm and 0.30 nm excluding structure factors less than 1 sigma. The current R factor is 27.1% and the root mean square deviation from ideal bond lengths is 4.2 pm. The FDH subunit is folded into a globular two-domain (coenzyme and catalytic) structure and the active centre and NAD binding site are situated at the domain interface. The beta sheet in the FDH coenzyme binding domain contains an additional beta strand compared to other dehydrogenases. The difference in quaternary structure between FDH and the other dehydrogenases means that FDH constitutes a new subfamily of NAD-dependent dehydrogenases: namely the P-oriented dimer. The FDH nucleotide binding region of the structure is aligned with the three dimensional structures of four other dehydrogenases and the conserved residues are discussed. The amino acid residues which contribute to the active centre and which make contact with NAD have been identified.


Subject(s)
Formate Dehydrogenases/chemistry , NAD/metabolism , Amino Acid Sequence , Binding Sites , Crystallization , Formate Dehydrogenases/genetics , Formate Dehydrogenases/metabolism , Macromolecular Substances , Models, Molecular , Molecular Sequence Data , Protein Conformation , Pseudomonas/enzymology , Sequence Alignment
15.
FEBS Lett ; 302(3): 256-60, 1992 May 18.
Article in English | MEDLINE | ID: mdl-1601133

ABSTRACT

The tyrosine phenol lyase (EC 4.1.99.2) from Citrobacter intermedius has been crystallised in the apo form by vapour diffusion. The space group is P2(1)2(1)2. The unit cell has dimensions a = 76.0 A, b = 138.3 A, c = 93.5 A and it contains two subunits of the tetrameric molecule in the asymmetric unit. Diffraction data for the native enzyme and two heavy atom derivatives have been collected with synchrotron radiation and an image plate scanner. The structure has been solved at 2.7 A resolution by isomorphous replacement with subsequent modification of the phases by averaging the density around the non-crystallographic symmetry axis. The electron density maps clearly show the relative orientation of the subunits and most of the trace of the polypeptide chain. Each subunit consists of two domains. The topology of the large domain appears to be similar to that of the aminotransferases.


Subject(s)
Citrobacter/enzymology , Pyridoxal Phosphate/pharmacology , Tyrosine Phenol-Lyase/chemistry , Chemical Phenomena , Chemistry, Physical , Crystallization , Macromolecular Substances , Protein Conformation , X-Ray Diffraction
16.
J Mol Biol ; 214(1): 261-79, 1990 Jul 05.
Article in English | MEDLINE | ID: mdl-2196375

ABSTRACT

The crystal structure of thermitase, a subtilisin-type serine proteinase from Thermoactinomyces vulgaris, was determined by X-ray diffraction at 1.4 A resolution. The structure was solved by a combination of molecular and isomorphous replacement. The starting model was that of subtilisin BPN' from the Protein Data Bank, determined at 2.5 A resolution. The high-resolution refinement was based on data collected using synchrotron radiation with a Fuji image plate as detector. The model of thermitase refined to a conventional R factor of 14.9% and contains 1997 protein atoms, 182 water molecules and two Ca ions. The tertiary structure of thermitase is similar to that of the other subtilisins although there are some significant differences in detail. Comparison with subtilisin BPN' revealed two major structural differences. The N-terminal region in thermitase, which is absent in subtilisin BPN', forms a number of contacts with the tight Ca2+ binding site and indeed provides the very tight binding of the Ca ion. In thermitase the loop of residues 60 to 65 forms an additional (10) beta-strand of the central beta-sheet and the second Ca2+ binding site that has no equivalent in the subtilisin BPN' structure. The observed differences in the Ca2+ binding and the increased number of ionic and aromatic interactions in thermitase are likely sources of the enhanced stability of thermitase.


Subject(s)
Endopeptidases , Serine Endopeptidases , Amino Acid Sequence , Binding Sites , Calcium/metabolism , Endopeptidases/metabolism , Models, Molecular , Molecular Sequence Data , Protein Conformation , Sequence Homology, Nucleic Acid , Subtilisins , X-Ray Diffraction
17.
Protein Eng ; 3(3): 161-72, 1990 Jan.
Article in English | MEDLINE | ID: mdl-2184432

ABSTRACT

We compare the three-dimensional structures of thermitase and of proteinase K determined by X-ray crystallography to a resolution of 1.4 and 1.48 A respectively. Both enzymes are relatively stable towards heat and denaturating agents and are representative of a subgroup of subtilisins characterized by a free SH group close to the active site histidine. Even though they have low sequence homology, the overall tertiary structures are highly conserved. The high resolution structures are compared in terms of the overall fold of the molecules, the active sites, the calcium binding sites, disulphide bridge positions, the positions of the charged residues and the solvent structure. Most subtilisins such as thermitase are of prokaryotic origin and proteinase K is up to now the only known eukaryotic structure.


Subject(s)
Endopeptidases , Serine Endopeptidases , Amino Acid Sequence , Binding Sites , Chemical Phenomena , Chemistry, Physical , Disulfides , Endopeptidase K , Endopeptidases/metabolism , Histidine , Hot Temperature , Hydrogen Bonding , Hydrogen-Ion Concentration , Ions , Models, Molecular , Molecular Sequence Data , Molecular Structure , Protein Conformation , Protein Denaturation , Sequence Homology, Nucleic Acid , Serine Endopeptidases/metabolism , Solvents , Sulfhydryl Compounds , X-Ray Diffraction
18.
FEBS Lett ; 244(1): 208-12, 1989 Feb 13.
Article in English | MEDLINE | ID: mdl-2647518

ABSTRACT

The crystal structure of thermitase from Thermoactinomyces vulgaris has been determined by x-ray diffraction at 2.2 A resolution. The structure was solved by a combination of single isomorphous replacement and molecular replacement methods. The structure was refined to a conventional R factor of 0.24 using restrained least square procedures CORELS and PROLSQ. The tertiary structure of thermitase is similar to that of subtilsin BPN'. The greatest differences between these structures are related to the insertions and deletions in the sequence.


Subject(s)
Actinomycetales/enzymology , Endopeptidases , Serine Endopeptidases , Amino Acid Sequence , Crystallization , Hydrogen Bonding , Molecular Sequence Data , Protein Conformation , Sequence Homology, Nucleic Acid , Subtilisins , X-Ray Diffraction
19.
FEBS Lett ; 232(2): 381-2, 1988 May 23.
Article in English | MEDLINE | ID: mdl-3378628

ABSTRACT

Crystals of the apoenzyme of tyrosine phenol-lyase (EC 4.1.99.2), a pyridoxal 5'-phosphate-dependent enzyme from Citrobacter intermedius, have been grown by vapor diffusion of an ammonium sulfate solution to a protein solution. The crystals belong to space group P2(1)2(1)2, with dimensions of a = 75.5 A, b = 138.4 A and c = 94.1 A and diffract up to 2.7 A resolution. The asymmetric unit contains one half of the enzyme tetrameric molecule. Two heavy-atom derivatives of the crystals have been obtained.


Subject(s)
Apoenzymes , Apoproteins , Citrobacter/enzymology , Lyases , Tyrosine Phenol-Lyase , Ammonium Sulfate , Chemical Precipitation , Crystallization , Hydrogen-Ion Concentration , Macromolecular Substances , Polyethylene Glycols , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...