Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol Methods ; 299: 114340, 2022 01.
Article in English | MEDLINE | ID: mdl-34695480

ABSTRACT

BACKGROUND: Screening of infectious asymptomatic or pre-symptomatic individuals for SARS-CoV-2 is at present a key to controling the COVID-19 pandemic. In order to expand testing capability and limit cost, pool testing of asymtomatic individuals has been proposed, provided assay performance is not significantly affected. METHODS: Combined nose and throat (N/T) swabs collected from COVID-19 infected or non-infected individuals were tested using SAMBA II individually and in pools of four (one positive and 3 negative). The evaluation was conducted by the manufacturer and an independent NHS site. Ct cycles of individual positives and pooled positives were determined by qRT-PCR. RESULTS: In 42 pools containing a single positive sample with Ct values ranging between 17 and 36, 41 pools (97.6 %) were found positive by the SARS-CoV-2 SAMBA II test. The false-negative pool by SAMBA was also negative by both reference methods used in this evaluation.The individual positive sample in this pool was positive by SAMBA (Orf only) and by one of the reference methods (S gene only, Ct 35) but negative by the second reference method indicating that the sample itself was very low viral load. All 78 pools containing 4 negative swabs were negative (100 % specificity). DISCUSSION: The preliminary data of the evaluation indicated a high level of performance in both sensitivity and specificity of the SAMBA II assay when used to test pools of 4 patient samples. The implementation of this pooled protocol can increase throughput and reduce cost/test when the prevalence of COVID is low.


Subject(s)
COVID-19 , SARS-CoV-2 , Diagnostic Tests, Routine , Humans , Pandemics , Sensitivity and Specificity , Specimen Handling
2.
Nat Commun ; 12(1): 1626, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712616

ABSTRACT

Minichromosome maintenance protein 10 (MCM10) is essential for eukaryotic DNA replication. Here, we describe compound heterozygous MCM10 variants in patients with distinctive, but overlapping, clinical phenotypes: natural killer (NK) cell deficiency (NKD) and restrictive cardiomyopathy (RCM) with hypoplasia of the spleen and thymus. To understand the mechanism of MCM10-associated disease, we modeled these variants in human cell lines. MCM10 deficiency causes chronic replication stress that reduces cell viability due to increased genomic instability and telomere erosion. Our data suggest that loss of MCM10 function constrains telomerase activity by accumulating abnormal replication fork structures enriched with single-stranded DNA. Terminally-arrested replication forks in MCM10-deficient cells require endonucleolytic processing by MUS81, as MCM10:MUS81 double mutants display decreased viability and accelerated telomere shortening. We propose that these bi-allelic variants in MCM10 predispose specific cardiac and immune cell lineages to prematurely arrest during differentiation, causing the clinical phenotypes observed in both NKD and RCM patients.


Subject(s)
Alleles , Cardiomyopathies/genetics , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/immunology , Telomere Shortening , Cell Cycle Proteins/metabolism , Cell Line , DNA Replication , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endonucleases/genetics , Endonucleases/metabolism , Humans , Killer Cells, Natural
3.
Hum Mol Genet ; 29(7): 1083-1095, 2020 05 08.
Article in English | MEDLINE | ID: mdl-31628488

ABSTRACT

Fanconi anemia (FA) is a chromosome instability syndrome characterized by increased cancer predisposition. Specifically, the FA pathway functions to protect genome stability during DNA replication. The central FA pathway protein, FANCD2, locates to stalled replication forks and recruits homologous recombination (HR) factors such as CtBP interacting protein (CtIP) to promote replication fork restart while suppressing new origin firing. Here, we identify alpha-thalassemia retardation syndrome X-linked (ATRX) as a novel physical and functional interaction partner of FANCD2. ATRX is a chromatin remodeler that forms a complex with Death domain-associated protein 6 (DAXX) to deposit the histone variant H3.3 into specific genomic regions. Intriguingly, ATRX was recently implicated in replication fork recovery; however, the underlying mechanism(s) remained incompletely understood. Our findings demonstrate that ATRX forms a constitutive protein complex with FANCD2 and protects FANCD2 from proteasomal degradation. ATRX and FANCD2 localize to stalled replication forks where they cooperate to recruit CtIP and promote MRE11 exonuclease-dependent fork restart while suppressing the firing of new replication origins. Remarkably, replication restart requires the concerted histone H3 chaperone activities of ATRX/DAXX and FANCD2, demonstrating that coordinated histone H3 variant deposition is a crucial event during the reinitiation of replicative DNA synthesis. Lastly, ATRX also cooperates with FANCD2 to promote the HR-dependent repair of directly induced DNA double-stranded breaks. We propose that ATRX is a novel functional partner of FANCD2 to promote histone deposition-dependent HR mechanisms in S-phase.


Subject(s)
Co-Repressor Proteins/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia/genetics , Molecular Chaperones/genetics , X-linked Nuclear Protein/genetics , Cell Line , Chromatin/genetics , Chromatin Assembly and Disassembly/genetics , DNA Breaks, Double-Stranded , DNA Repair/genetics , DNA Replication/genetics , Fanconi Anemia/pathology , Gene Knockout Techniques/methods , Histones/genetics , Humans , MRE11 Homologue Protein/genetics , Rad51 Recombinase/genetics , Recombinational DNA Repair/genetics , Signal Transduction/genetics
4.
Int J Radiat Oncol Biol Phys ; 105(2): 400-409, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31175904

ABSTRACT

PURPOSE: To assess whether BIO 300, a synthetic genistein nanosuspension, improves the therapeutic index in prostate cancer treatment by preventing radiation-induced erectile dysfunction (ED) without reducing tumor radiosensitivity. METHODS AND MATERIALS: Male Sprague-Dawley rats were exposed to 25 Gy of 220-kV prostate-confined x-rays. Animals were randomized to receive sham radiation therapy (RT), RT alone, RT with daily BIO 300 at 2 experimental dosing regimens, or RT with daily genistein. Erectile response was evaluated over time. Penile shaft tissue was harvested for histologic analyses. Murine xenograft studies using prostate cancer cell lines determined the effects of BIO 300 dosing on RT efficacy. RESULTS: Prostate-confined RT significantly decreased apomorphine-induced erectile response (P < .05 vs sham RT). Erection frequency in animals receiving prophylactic treatment with BIO 300 starting 3 days before RT was similar to sham controls after RT. Treatment with synthetic genistein did not mitigate loss in erectile frequency. At week 14, post-RT treatment with BIO 300 resulted in significantly higher quality of erectile function compared with both the RT arm and the RT arm receiving genistein starting 3 days before irradiation (P < .05). In hormone-sensitive and insensitive prostate tumor-bearing mice, BIO 300 administration did not negatively affect radiation-induced tumor growth delay. CONCLUSIONS: BIO 300 prevents radiation-induced ED, measured by erection frequency, erectile function, and erection quality, when administered 3 days before RT and continued daily for up to 14 weeks. Data also suggest that BIO 300 administered starting 2 hours after RT mitigates radiation-induced ED. Data provide strong nonclinical evidence to support clinical translation of BIO 300 for mitigation of ED while maintaining treatment response to RT.


Subject(s)
Erectile Dysfunction/prevention & control , Genistein/therapeutic use , Nanoparticles/therapeutic use , Penile Erection/drug effects , Radiation Injuries, Experimental/complications , Radiation-Protective Agents/therapeutic use , Animals , Blood Pressure , Disease Models, Animal , Drugs, Investigational/therapeutic use , Erectile Dysfunction/etiology , Fibrosis , Male , Mice , Mice, Nude , Penile Erection/radiation effects , Penis/blood supply , Penis/pathology , Prostate/radiation effects , Random Allocation , Rats , Rats, Sprague-Dawley , Regional Blood Flow , Suspensions/therapeutic use , Transplantation, Heterologous
5.
J Radiat Res ; 60(3): 308-317, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31038675

ABSTRACT

There are no FDA-approved drugs that can be administered prior to ionizing radiation exposure to prevent hematopoietic-acute radiation syndrome (H-ARS). A suspension of synthetic genistein nanoparticles was previously shown to be an effective radioprotectant against H-ARS when administered prior to exposure to a lethal dose of total body radiation. Here we aimed to determine the time to protection and the duration of protection when the genistein nanosuspension was administered by intramuscular injection, and we also investigated the drug's mechanism of action. A single intramuscular injection of the genistein nanosuspension was an effective radioprotectant when given prophylactically 48 h to 12 h before irradiation, with maximum effectiveness occurring when administered 24 h before. No survival advantage was observed in animals administered only a single dose of drug after irradiation. The dose reduction factor of the genistein nanosuspension was determined by comparing the survival of treated and untreated animals following different doses of total body irradiation. As genistein is a selective estrogen receptor beta agonist, we also explored whether this was a central component of its radioprotective mechanism of action. Mice that received an intramuscular injection of an estrogen receptor antagonist (ICI 182,780) prior to administration of the genistein nanosuspension had significantly lower survival following total body irradiation compared with animals only receiving the nanosuspension (P < 0.01). These data define the time to and duration of radioprotection following a single intramuscular injection of the genistein nanosuspension and identify its likely mechanism of action.


Subject(s)
Acute Radiation Syndrome/drug therapy , Genistein/therapeutic use , Hematopoiesis , Nanoparticles/chemistry , Radiation-Protective Agents/therapeutic use , Animals , Dose-Response Relationship, Radiation , Genistein/administration & dosage , Hematopoiesis/drug effects , Injections, Intramuscular , Male , Mice , Radiation Exposure , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/metabolism , Suspensions
SELECTION OF CITATIONS
SEARCH DETAIL
...