Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 143(10): 101103, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26373991

ABSTRACT

We report the first UV laser photodissociation spectra of gas-phase I(-) ⋅ MI (M = Na, K, Cs) alkali halide anionic microclusters. The photodepletion spectra of these clusters display strong absorption bands just below the calculated vertical detachment energies, indicative of the presence of dipole-bound excited states. Photoexcitation at the peak of the transition to the dipole-bound excited state results in production of a primary [MI](-) photofragment along with a less intense I(-) ion. The photofragmentation mechanism of the excited state cluster is discussed in the context of an initial dipole-bound excited state that subsequently relaxes via a vibrational Feschbach resonance. The experiments described have been performed in an electrospray source laser-interfaced quadrupole ion-trap instrument and demonstrated for the first time that dipole-bound excited states can be identified in the relatively high-collision environment of a quadrupole ion-trap, in particular for systems with large dipole moments associated with the presence of charge separation. This indicates considerable potential for future experiments that identify dipole-bound excited states as a "low-resolution" structural probe of biomolecules and molecular charge separation using the instrumentation employed in this work.

2.
J Phys Chem A ; 117(47): 12590-600, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24147965

ABSTRACT

We present a comparative assessment of the performance of the M06 suite of density functionals (M06, M06-2X, and M06-HF) against an MP2 benchmark for calculating the relative energies and geometric structures of the Cl(-)·arginine and Br(-)·arginine halide ion-amino acid clusters. Additional results are presented for the popular B3LYP density functional. The Cl(-)·arginine and Br(-)·arginine complexes are important prototypes for the phenomenon of anion-induced zwitterion formation. Results are presented for the canonical (noncharge separated) and zwitterionic (charge separated) tautomers of the clusters, as well as the numerous conformational isomers of the clusters. We find that all of the M06 functions perform well in terms of predicting the general trends in the conformer relative energies and identifying the global minimum conformer. This is in contrast to the B3LYP functional, which performed significantly less well for the canonical tautomers of the clusters where dispersion interactions contribute more significantly to the conformer energetics. We find that the M06 functional gave the lowest mean unsigned error for the relative energies of the canonical conformers (2.10 and 2.36 kJ/mol for Br(-)·arginine and Cl(-)·arginine), while M06-2X gave the lowest mean unsigned error for the zwitterionic conformers (0.85 and 1.23 kJ/mol for Br(-)·arginine and Cl(-)·arginine), thus providing insight into the types of physical systems where each of these functionals should perform best.


Subject(s)
Arginine/chemistry , Bromine/chemistry , Chlorine/chemistry , Quantum Theory , Hydrofluoric Acid , Hydrogen Bonding , Ions/chemistry , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...