Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Artif Life ; 30(1): 48-64, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38346273

ABSTRACT

We survey the general trajectory of artificial intelligence (AI) over the last century, in the context of influences from Artificial Life. With a broad brush, we can divide technical approaches to solving AI problems into two camps: GOFAIstic (or computationally inspired) or cybernetic (or ALife inspired). The latter approach has enabled advances in deep learning and the astonishing AI advances we see today-bringing immense benefits but also societal risks. There is a similar divide, regrettably unrecognized, over the very way that such AI problems have been framed. To date, this has been overwhelmingly GOFAIstic, meaning that tools for humans to use have been developed; they have no agency or motivations of their own. We explore the implications of this for concerns about existential risk for humans of the "robots taking over." The risks may be blamed exclusively on human users-the robots could not care less.


Subject(s)
Artificial Intelligence , Deep Learning , Humans , Motivation
2.
Orig Life Evol Biosph ; 53(1-2): 87-112, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37166609

ABSTRACT

It is common in origins of life research to view the first stages of life as the passive result of particular environmental conditions. This paper considers the alternative possibility: that the antecedents of life were already actively regulating their environment to maintain the conditions necessary for their own persistence. In support of this proposal, we describe 'viability-based behaviour': a way that simple entities can adaptively regulate their environment in response to their health, and in so doing, increase the likelihood of their survival. Drawing on empirical investigations of simple self-preserving abiological systems, we argue that these viability-based behaviours are simple enough to precede neo-Darwinian evolution. We also explain how their operation can reduce the demanding requirements that mainstream theories place upon the environment(s) in which life emerged.

3.
Artif Life ; 25(4): 334-351, 2019.
Article in English | MEDLINE | ID: mdl-31697581

ABSTRACT

Life and cognition are inherently circular dynamical processes, and people have difficulty understanding circular causation. I give case studies illustrating some resulting confusions, and propose that the problems may lie in failing to properly distinguish between similar concepts used to describe both local and global features of a system. I analyze how explanations in terms of circular causation work and how they rely on principles of normal settlement. Even though they typically will not explain the origins of phenomena (that is the province of linear causal explanation), circular explanations have predictive power for any persisting (i.e., stable or metastable) phenomena.


Subject(s)
Artificial Intelligence , Cognition , Life , Terminology as Topic , Humans
4.
Artif Life ; 24(1): 29-48, 2018.
Article in English | MEDLINE | ID: mdl-29369714

ABSTRACT

In both social systems and ecosystems there is a need to resolve potential conflicts between the interests of individuals and the collective interest of the community. The collective interests need to survive the turbulent dynamics of social and ecological interactions. To see how different systems with different sets of interactions have different degrees of robustness, we need to look at their different contingent histories. We analyze abstract artificial life models of such systems, and note that some prominent examples rely on explicitly ahistorical frameworks; we point out where analyses that ignore a contingent historical context can be fatally flawed. The mathematical foundations of Gaia theory are presented in a form whose very basic and general assumptions point to wide applicability across complex dynamical systems. This highlights surprising connections between robustness and accumulated contingent happenstance, regardless of whether Darwinian evolution is or is not implicated. Real-life studies highlight the role of history, and artificial life studies should do likewise.


Subject(s)
Ecosystem , Interpersonal Relations , Animals , Humans , Models, Biological , Models, Theoretical , Prisoner Dilemma , Synthetic Biology
5.
Artif Life ; 20(1): 163-81, 2014.
Article in English | MEDLINE | ID: mdl-23373977

ABSTRACT

When niching or speciation is required to perform a task that has several different component parts, standard genetic algorithms (GAs) struggle. They tend to evaluate and select all individuals on the same part of the task, which leads to genetic convergence within the population. The goal of evolutionary niching methods is to enforce diversity in the population so that this genetic convergence is avoided. One drawback with some of these niching methods is that they require a priori knowledge or assumptions about the specific fitness landscape in order to work; another is that many such methods are not set up to work on cooperative tasks where fitness is only relevant at the group level. Here we address these problems by presenting the group GA, described earlier by the authors, which is a group-based evolutionary algorithm that can lead to emergent niching. After demonstrating the group GA on an immune system matching task, we extend the previous work and present two modified versions where the number of niches does not need to be specified ahead of time. In the random-group-size GA, the number of niches is varied randomly during evolution, and in the evolved-group-size GA the number of niches is optimized by evolution. This provides a framework in which we can evolve groups of individuals to collectively perform tasks with minimal a priori knowledge of how many subtasks there are or how they should be shared out.


Subject(s)
Group Processes , Algorithms , Biological Evolution , Humans , Immune System
6.
Artif Life ; 11(1-2): 79-98, 2005.
Article in English | MEDLINE | ID: mdl-15811221

ABSTRACT

We survey developments in artificial neural networks, in behavior-based robotics, and in evolutionary algorithms that set the stage for evolutionary robotics (ER) in the 1990s. We examine the motivations for using ER as a scientific tool for studying minimal models of cognition, with the advantage of being capable of generating integrated sensorimotor systems with minimal (or controllable) prejudices. These systems must act as a whole in close coupling with their environments, which is an essential aspect of real cognition that is often either bypassed or modeled poorly in other disciplines. We demonstrate with three example studies: homeostasis under visual inversion, the origins of learning, and the ontogenetic acquisition of entrainment.


Subject(s)
Biological Evolution , Cognition/physiology , Robotics/methods , Robotics/trends , Animals , Humans
7.
Curr Opin Drug Discov Devel ; 5(1): 44-51, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11865672

ABSTRACT

This review discusses evolutionary and adaptive methods for predicting oral bioavailability (OB) from chemical structure. Genetic Programming (GP), a specific form of evolutionary computing, is compared with some other advanced computational methods for OB prediction. The results show that classifying drugs into 'high' and 'low' OB classes on the basis of their structure alone is solvable, and initial models are already producing output that would be useful for pharmaceutical research. The results also suggest that quantitative prediction of OB will be tractable. Critical aspects of the solution will involve the use of techniques that can: (i) handle problems with a very large number of variables (high dimensionality); (ii) cope with 'noisy' data; and (iii) implement binary choices to sub-classify molecules with behavior that are qualitatively different. Detailed quantitative predictions will emerge from more refined models that are hybrids derived from mechanistic models of the biology of oral absorption and the power of advanced computing techniques to predict the behavior of the components of those models in silico.


Subject(s)
Biological Availability , Computational Biology/methods , Animals , Artificial Intelligence , Chemical Phenomena , Chemistry, Physical , Humans , Models, Chemical , Predictive Value of Tests , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...