Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(34): e2302676120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37590406

ABSTRACT

Interictal epileptiform discharges (IEDs) are transient abnormal electrophysiological events commonly observed in epilepsy patients but are also present in other neurological diseases, such as Alzheimer's disease (AD). Understanding the role IEDs have on the hippocampal circuit is important for our understanding of the cognitive deficits seen in epilepsy and AD. We characterize and compare the IEDs of human epilepsy patients from microwire hippocampal recording with those of AD transgenic mice with implanted multilayer hippocampal silicon probes. Both the local field potential features and firing patterns of pyramidal cells and interneurons were similar in the mouse and human. We found that as IEDs emerged from the CA3-1 circuits, they recruited pyramidal cells and silenced interneurons, followed by post-IED suppression. IEDs suppressed the incidence and altered the properties of physiological sharp-wave ripples, altered their physiological properties, and interfered with the replay of place field sequences in a maze. In addition, IEDs in AD mice inversely correlated with daily memory performance. Together, our work implies that IEDs may present a common and epilepsy-independent phenomenon in neurodegenerative diseases that perturbs hippocampal-cortical communication and interferes with memory.


Subject(s)
Alzheimer Disease , Body Fluids , Cognition Disorders , Humans , Animals , Mice , Alzheimer Disease/genetics , Cognition , Disease Models, Animal , Mice, Transgenic
2.
Neuron ; 111(13): 2076-2090.e9, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37196658

ABSTRACT

Traditionally considered a homogeneous cell type, hippocampal pyramidal cells have been recently shown to be highly diverse. However, how this cellular diversity relates to the different hippocampal network computations that support memory-guided behavior is not yet known. We show that the anatomical identity of pyramidal cells is a major organizing principle of CA1 assembly dynamics, the emergence of memory replay, and cortical projection patterns in rats. Segregated pyramidal cell subpopulations encoded trajectory and choice-specific information or tracked changes in reward configuration respectively, and their activity was selectively read out by different cortical targets. Furthermore, distinct hippocampo-cortical assemblies coordinated the reactivation of complementary memory representations. These findings reveal the existence of specialized hippocampo-cortical subcircuits and provide a cellular mechanism that supports the computational flexibility and memory capacities of these structures.


Subject(s)
Hippocampus , Pyramidal Cells , Rats , Animals , Hippocampus/physiology
3.
bioRxiv ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36824810

ABSTRACT

Interictal epileptiform discharges (IEDs) are transient abnormal electrophysiological events commonly observed in epilepsy patients but are also present in other neurological disease, such as Alzheimer's Disease (AD). Understanding the role IEDs have on the hippocampal circuit is important for our understanding of the cognitive deficits seen in epilepsy and AD. We characterize and compare the IEDs of human epilepsy patients from microwire hippocampal recording with those of AD transgenic mice with implanted multi-layer hippocampal silicon probes. Both the local field potential features and firing patterns of pyramidal cells and interneurons were similar in mouse and human. We found that as IEDs emerged from the CA3-1 circuits, they recruited pyramidal cells and silenced interneurons, followed by post-IED suppression. IEDs suppressed the incidence and altered the properties of physiological sharp-wave ripples (SPW-Rs), altered their physiological properties, and interfered with the replay of place field sequences in a maze. In addition, IEDs in AD mice inversely correlated with daily memory performance. Together, our work implicates that IEDs may present a common and epilepsy-independent phenomenon in neurodegenerative diseases that perturbs hippocampal-cortical communication and interferes with memory. Significant Statement: Prevalence of neurodegenerative diseases and the number of people with dementia is increasing steadily. Therefore, novel treatment strategies for learning and memory disorders are urgently necessary. IEDs, apart from being a surrogate for epileptic brain regions, have also been linked to cognitive decline. Here we report that IEDs in human epilepsy patients and AD mouse models have similar local field potential characteristics and associated firing patterns of pyramidal cells and interneurons. Mice with more IEDs displayed fewer hippocampal SPW-Rs, poorer replay of spatial trajectories, and decreased memory performance. IED suppression is an unexplored target to treat cognitive dysfunction in neurodegenerative diseases.

4.
Curr Biol ; 30(18): 3556-3569.e5, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32707066

ABSTRACT

Prenatal alcohol exposure (PAE) leads to profound deficits in spatial memory and synaptic and cellular alterations to the hippocampus that last into adulthood. Neurons in the hippocampus called place cells discharge as an animal enters specific places in an environment, establish distinct ensemble codes for familiar and novel places, and are modulated by local theta rhythms. Spatial memory is thought to critically depend on the integrity of hippocampal place cell firing. Therefore, we tested the hypothesis that hippocampal place cell firing is impaired after PAE by performing in vivo recordings from the hippocampi (CA1 and CA3) of moderate PAE and control adult rats. Our results show that hippocampal CA3 neurons from PAE rats have reduced spatial tuning. Second, CA1 and CA3 neurons from PAE rats are less likely to orthogonalize their firing between directions of travel on a linear track and between changes in contextual stimuli in an open arena compared to control neurons. Lastly, reductions in the number of hippocampal place cells exhibiting significant theta rhythmicity and phase precession were observed, which may suggest changes to hippocampal microcircuit function. Together, the reduced spatial tuning and sensitivity to contextual changes provide a neural systems-level mechanism to explain spatial memory impairment after moderate PAE.


Subject(s)
Action Potentials , Alcohol Drinking/adverse effects , CA1 Region, Hippocampal/pathology , CA3 Region, Hippocampal/pathology , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/pathology , Theta Rhythm/drug effects , Animals , CA1 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/drug effects , Female , Male , Neurons/drug effects , Neurons/pathology , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Rats , Rats, Long-Evans , Spatial Memory
5.
Neurosci Biobehav Rev ; 107: 775-794, 2019 12.
Article in English | MEDLINE | ID: mdl-31526818

ABSTRACT

The consumption of alcohol during gestation is detrimental to the developing central nervous system. One functional outcome of this exposure is impaired spatial processing, defined as sensing and integrating information pertaining to spatial navigation and spatial memory. The hippocampus, entorhinal cortex, and anterior thalamus are brain regions implicated in spatial processing and are highly susceptible to the effects of developmental alcohol exposure. Some of the observed effects of alcohol on spatial processing may be attributed to changes at the synaptic to circuit level. In this review, we first describe the impact of developmental alcohol exposure on spatial behavior followed by a summary of the development of brain areas involved in spatial processing. We then provide an examination of the consequences of prenatal and early postnatal alcohol exposure in rodents on hippocampal, anterior thalamus, and entorhinal cortex-dependent spatial processing from the cellular to behavioral level. We conclude by highlighting several unanswered questions which may provide a framework for future investigation.


Subject(s)
Ethanol/adverse effects , Prenatal Exposure Delayed Effects/physiopathology , Spatial Navigation/drug effects , Animals , Entorhinal Cortex/drug effects , Entorhinal Cortex/physiopathology , Female , Hippocampus/drug effects , Hippocampus/physiopathology , Humans , Mice , Pregnancy , Prenatal Exposure Delayed Effects/psychology , Thalamus/drug effects , Thalamus/physiopathology
6.
Front Neural Circuits ; 13: 75, 2019.
Article in English | MEDLINE | ID: mdl-31920565

ABSTRACT

Head direction (HD) cells, which fire action potentials whenever an animal points its head in a particular direction, are thought to subserve the animal's sense of spatial orientation. HD cells are found prominently in several thalamo-cortical regions including anterior thalamic nuclei, postsubiculum, medial entorhinal cortex, parasubiculum, and the parietal cortex. While a number of methods in neural decoding have been developed to assess the dynamics of spatial signals within thalamo-cortical regions, studies conducting a quantitative comparison of machine learning and statistical model-based decoding methods on HD cell activity are currently lacking. Here, we compare statistical model-based and machine learning approaches by assessing decoding accuracy and evaluate variables that contribute to population coding across thalamo-cortical HD cells.


Subject(s)
Action Potentials/physiology , Cerebral Cortex/physiology , Head Movements/physiology , Neurons/physiology , Orientation, Spatial/physiology , Thalamus/physiology , Animals , Computer Simulation , Models, Neurological , Rats , Spatial Navigation/physiology
7.
Sci Rep ; 8(1): 16153, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30385825

ABSTRACT

Spatial navigation is impaired in early stages of Alzheimer's disease, and may be a defining behavioral marker of preclinical AD. A new rat model (TgF344-AD) of AD overcomes many limitations of other rodent models, though spatial navigation has not been comprehensively assessed. Using the hidden and cued platform variants of the Morris water task, a longitudinal assessment of spatial navigation was conducted on TgF344-AD (n = 16) and Fischer 344 (n = 12) male and female rats at three age ranges: 4 to 5 months, 7 to 8, and 10 to 11 months of age. TgF344-AD rats exhibited largely intact navigation at 4-5 months, with deficits in the hidden platform task emerging at 7-8 months and becoming significantly pronounced at 10-11 months of age. In general, TgF344-AD rats displayed less accurate swim trajectories to the platform and searched a wider area around the platform region compared to wildtype rats. Impaired navigation occurred in the absence of deficits in acquiring the procedural task demands or navigation to the cued platform location. Together, the results indicate that TgF344-AD rats exhibit comparable navigational deficits to those found in individuals with preclinical-AD.


Subject(s)
Alzheimer Disease/physiopathology , Spatial Navigation/physiology , Animals , Disease Models, Animal , Female , Humans , Male , Maze Learning/physiology , Rats , Rats, Inbred F344 , Water
8.
Curr Biol ; 28(11): 1803-1810.e5, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29779876

ABSTRACT

The vestibular system provides a crucial component of place-cell and head-direction cell activity [1-7]. Otolith signals are necessary for head-direction signal stability and associated behavior [8, 9], and the head-direction signal's contribution to parahippocampal spatial representations [10-14] suggests that place cells may also require otolithic information. Here, we demonstrate that self-movement information from the otolith organs is necessary for the development of stable place fields within and across sessions. Place cells in otoconia-deficient tilted mice showed reduced spatial coherence and formed place fields that were located closer to environmental boundaries, relative to those of control mice. These differences reveal an important otolithic contribution to place-cell functioning and provide insight into the cognitive deficits associated with otolith dysfunction.


Subject(s)
Cues , Hippocampus/physiology , Motion , Otolithic Membrane/physiology , Place Cells/physiology , Animals , Male , Mice , Movement/physiology
9.
Front Neurosci ; 11: 94, 2017.
Article in English | MEDLINE | ID: mdl-28321178

ABSTRACT

The limbic thalamus, specifically the anterior thalamic nuclei (ATN), contains brain signals including that of head direction cells, which fire as a function of an animal's directional orientation in an environment. Recent work has suggested that this directional orientation information stemming from the ATN contributes to the generation of hippocampal and parahippocampal spatial representations, and may contribute to the establishment of unique spatial representations in radially oriented tasks such as the radial arm maze. While previous studies have shown that ATN lesions can impair spatial working memory performance in the radial maze, little work has been done to investigate spatial reference memory in a discrimination task variant. Further, while previous studies have shown that ATN lesions can impair performance in the radial maze, these studies produced the ATN lesions prior to training. It is therefore unclear whether the ATN lesions disrupted acquisition or retention of radial maze performance. Here, we tested the role of ATN signaling in a previously learned spatial discrimination task on a radial arm maze. Rats were first trained to asymptotic levels in a task in which two maze arms were consistently baited across training. After 24 h, animals received muscimol inactivation of the ATN before a 4 trial probe test. We report impairments in post-inactivation trials, suggesting that signals from the ATN modulate the use of a previously acquired spatial discrimination in the radial-arm maze. The results are discussed in relation to the thalamo-cortical limbic circuits involved in spatial information processing, with an emphasis on the head direction signal.

10.
Neurobiol Learn Mem ; 133: 69-78, 2016 09.
Article in English | MEDLINE | ID: mdl-27266961

ABSTRACT

The anterior and lateral thalamus has long been considered to play an important role in spatial and mnemonic cognitive functions; however, it remains unclear whether each region makes a unique contribution to spatial information processing. We begin by reviewing evidence from anatomical studies and electrophysiological recordings which suggest that at least one of the functions of the anterior thalamus is to guide spatial orientation in relation to a global or distal spatial framework, while the lateral thalamus serves to guide behavior in relation to a local or proximal framework. We conclude by reviewing experimental work using targeted manipulations (lesion or neuronal silencing) of thalamic nuclei during spatial behavior and single-unit recordings from neuronal representations of space. Our summary of this literature suggests that although the evidence strongly supports a working model of spatial information processing involving the anterior thalamus, research regarding the role of the lateral thalamus is limited and requires further attention. We therefore identify a number of major gaps in this research and suggest avenues of future study that could potentially solidify our understanding of the relative roles of anterior and lateral thalamic regions in spatial representation and memory.


Subject(s)
Anterior Thalamic Nuclei/physiology , Lateral Thalamic Nuclei/physiology , Spatial Behavior/physiology , Spatial Memory/physiology , Animals , Anterior Thalamic Nuclei/cytology , Anterior Thalamic Nuclei/pathology , Humans , Lateral Thalamic Nuclei/cytology , Lateral Thalamic Nuclei/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...