Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 9(28): 19469-19480, 2018 Apr 13.
Article in English | MEDLINE | ID: mdl-29731959

ABSTRACT

Neoepitope-specific T-cell responses have been shown to induce durable clinical responses in patients with advanced cancers. We explored the recognition patterns of tumor-infiltrating T lymphocytes (TILs) from patients with glioblastoma multiforme (GBM), the most fatal form of tumors of the central nervous system. Whole-genome sequencing was used for generating DNA sequences representing the entire spectrum of 'private' somatic mutations in GBM tumors from five patients, followed by 15-mer peptide prediction and subsequent peptide synthesis. For each mutated peptide sequence, the wildtype sequence was also synthesized and individually co-cultured with autologous GBM TILs, which had been expanded in vitro with a combination of interleukin (IL)-2, IL-15 and IL-21. After seven days of culture, interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α) and/or IL-17A production was measured by ELISA in culture supernatants, and used as an epitope-specific immune response readout. Mutated peptides that induced a strong cytokine response were considered to contain legitimate neoepitopes. TILs from 5/5 patients with GBM exhibited specific immune reactivity profiles to the nominal target peptides, defined by IFN-γ and/or TNF-α production, as well as IL-17A. Neoepitopes, defined by mutated peptides inducing IFN-γ and/or TNF-α production without or only minimal reactivity to the wildtype sequences, were found for each individual patient. CD8+ TILs dominated the patients' responses to private neoepitopes. The present study shows that neoepitope-specific TIL reactivity constitutes an important arm of anti-tumor immune responses in patients with GBM, and thus a powerful tool for developing next-generation personalized immunotherapies.

3.
Cancer Immunol Immunother ; 67(2): 237-246, 2018 02.
Article in English | MEDLINE | ID: mdl-29058035

ABSTRACT

The prognosis for patients with glioblastoma is grim. Ex vivo expanded tumor-associated antigen (TAA)-reactive T-cells from patients with glioma may represent a viable source for anticancer-directed cellular therapies. Immunohistochemistry was used to test the survivin (n = 40 samples) and NY-ESO-1 (n = 38 samples) protein expression in tumor specimens. T-cells from peripheral blood were stimulated with TAAs (synthetic peptides) in IL-2 and IL-7, or using a combination of IL-2, IL-15 and IL-21. CD4+ and CD8+ T-cells were tested for antigen-specific proliferation by flow cytometry, and IFN-γ production was tested by ELISA. Twenty-eight out of 38 cancer specimens exhibited NY-ESO-1 protein expression, 2/38 showed a strong universal (4+) NY-ESO-1 staining, and 9/40 cancer lesions exhibited a strong (4+) staining for survivin. We could detect antigen-specific IFN-γ responses in 25% blood samples for NY-ESO-1 and 30% for survivin. NY-ESO-1-expanded T-cells recognized naturally processed and presented epitopes. NY-ESO-1 or survivin expression in glioma represents viable targets for anticancer-directed T-cells for the biological therapy of patients with glioma.


Subject(s)
Antigens, Neoplasm/immunology , Brain Neoplasms/immunology , Glioblastoma/immunology , Membrane Proteins/immunology , Survivin/immunology , T-Lymphocytes/immunology , Adult , Aged , Antigens, Neoplasm/biosynthesis , Antigens, Neoplasm/blood , Brain Neoplasms/blood , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay , Epitopes, T-Lymphocyte/immunology , Glioblastoma/blood , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/blood , Interferon-gamma/immunology , Membrane Proteins/biosynthesis , Membrane Proteins/blood , Middle Aged , Peptides/immunology , Peptides/pharmacology , Prognosis , Survivin/biosynthesis , Survivin/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...