Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 729, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272895

ABSTRACT

Aedes aegypti is the main vector of several major pathogens including dengue, Zika and chikungunya viruses. Classical mosquito control strategies utilizing insecticides are threatened by rising resistance. This has stimulated interest in new genetic systems such as gene drivesHere, we test the regulatory sequences from the Ae. aegypti benign gonial cell neoplasm (bgcn) homolog to express Cas9 and a separate multiplexing sgRNA-expressing cassette inserted into the Ae. aegypti kynurenine 3-monooxygenase (kmo) gene. When combined, these two elements provide highly effective germline cutting at the kmo locus and act as a gene drive. Our target genetic element drives through a cage trial population such that carrier frequency of the element increases from 50% to up to 89% of the population despite significant fitness costs to kmo insertions. Deep sequencing suggests that the multiplexing design could mitigate resistance allele formation in our gene drive system.


Subject(s)
Aedes , Gene Drive Technology , Insecticides , Zika Virus Infection , Zika Virus , Animals , CRISPR-Cas Systems/genetics , Aedes/genetics , RNA, Guide, CRISPR-Cas Systems , Zika Virus Infection/genetics , Zika Virus/genetics
2.
ACS Synth Biol ; 2(3): 160-6, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23802263

ABSTRACT

The sterile insect technique (SIT) is a pest control strategy involving the mass release of radiation-sterilized insects, which reduce the target population through nonviable matings. In Lepidoptera, SIT could be more broadly applicable if the deleterious effects of sterilization by irradiation could be avoided. Moreover, male-only release can improve the efficacy of SIT. Adequate methods of male-only production in Lepidoptera are currently lacking, in contrast to some Diptera. We describe a synthetic genetic system that allows male-only moth production for SIT and also replaces radiation sterilization with inherited female-specific lethality. We sequenced and characterized the doublesex (dsx) gene from the pink bollworm (Pectinophora gossypiella). Sex-alternate splicing from dsx was used to develop a conditional lethal genetic sexing system in two pest moths: the diamondback moth (Plutella xylostella) and pink bollworm. This system shows promise for enhancing existing pink bollworm SIT, as well as broadening SIT-type control to diamondback moth and other Lepidoptera.


Subject(s)
Animals, Genetically Modified/genetics , Genes, Lethal , Lepidoptera/genetics , Pest Control, Biological/methods , Sterilization, Reproductive/methods , Animals , Female , Insect Proteins/genetics , Male , Moths/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...