Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 659: 105-118, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38159487

ABSTRACT

HYPOTHESIS: Understanding contact angle hysteresis on rough surfaces is important as most industrially relevant and naturally occurring surfaces possess some form of random or structured roughness. We hypothesise that hysteresis can be described by the dilute defect model of Joanny & de Gennes [1] and that the energy dissipation occurring during the stick-slip motion of the contact line is key to developing a predictive equation for hysteresis. EXPERIMENTS: We measured hysteresis on surfaces with randomly distributed and periodically arranged microscopic cylindrical pillars for a variety of different liquids in air. The inherent (flat surface) contact angles tested range from lyophilic (θe=33.8°) to lyophobic (θe=112.0°). FINDINGS: A methodology for averaging the measured advancing and receding contact angles on random surfaces is presented. Based on these results correlations for roughness-induced energy dissipation are derived, and an equation for predicting the advancing and receding contact angles during homogeneous (Wenzel) wetting on random surfaces is presented. Equations that predict the onset of the alternate wetting conditions of hemiwicking, split-advancing, split-receding and heterogeneous (Cassie) wetting are also derived, thus defining the range of validity for the homogeneous wetting equation. A 'cluster' concept is proposed to explain the measurably higher hysteresis exhibited by structured surfaces compared to random surfaces.

2.
ACS Cent Sci ; 7(4): 671-680, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-34056097

ABSTRACT

Thin-film composite (TFC) polymeric membranes have attracted increasing interest to meet the demands of industrial gas separation. However, the development of high-performance TFC membranes within their current configuration faces two key challenges: (i) the thickness-dependent gas permeability of polymeric materials (mainly poly(dimethylsiloxane) (PDMS)) and (ii) the geometric restriction effect due to the limited pore accessibility of the underlying porous substrate. Here we demonstrate that the incorporation of trace amounts (∼1.8 wt %) of amorphous metal-organic framework (MOF) nanosheets into the gutter layer of TFC assemblies can simultaneously address these two limitations by the creation of rapid, transmembrane gas diffusion pathways. The resultant PDMS&MOF membrane displayed excellent CO2 permeance of 10450 GPU and CO2/N2 selectivity of 9.1. Leveraging this strategy, we successfully fabricate a novel TFC membrane, consisting of a PDMS&MOF gutter and an ultrathin (∼54 nm) poly(ethylene glycol) top selective layer via surface-initiated atom transfer radical polymerization. The complete TFC membrane exhibits excellent processability and remarkable CO2/N2 separation performance (1990 GPU with a CO2/N2 ideal selectivity of 39). This study reveals a strategy for the design and fabrication of a new TFC membrane system with unprecedented gas-separation performance.

3.
Biophys J ; 119(1): 162-181, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32544388

ABSTRACT

We investigate the capacity of published numerical models of thrombin generation to reproduce experimentally observed threshold behavior under conditions in which diffusion and/or flow are important. Computational fluid dynamics simulations incorporating species diffusion, fluid flow, and biochemical reactions are compared with published data for thrombin generation in vitro in 1) quiescent plasma exposed to patches of tissue factor and 2) plasma perfused through a capillary coated with tissue factor. Clot time is correctly predicted in individual cases, and some models qualitatively replicate thrombin generation thresholds across a series of tissue factor patch sizes or wall shear rates. Numerical results suggest that there is not a genuine patch size threshold in quiescent plasma-clotting always occurs given enough time-whereas the shear rate threshold observed under flow is a genuine physical limit imposed by flow-mediated washout of active coagulation factors. Despite the encouraging qualitative results obtained with some models, no single model robustly reproduces all experiments, demonstrating that greater understanding of the underlying reaction network, and particularly of surface reactions, is required. In this direction, additional simulations provide evidence that 1) a surface-localized enzyme, speculatively identified as meizothrombin, is significantly active toward the fluorescent thrombin substrate used in the experiments or, less likely, 2) thrombin is irreversibly inhibited at a faster-than-expected rate, possibly explained by a stimulatory effect of plasma heparin on antithrombin. These results highlight the power of simulation to provide novel mechanistic insights that augment experimental studies and build our understanding of complex biophysicochemical processes. Further validation work is critical to unleashing the full potential of coagulation models as tools for drug development and personalized medicine.


Subject(s)
Thrombin , Thrombosis , Blood Coagulation , Fibrin , Humans , Thromboplastin
4.
Sci Rep ; 10(1): 5531, 2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32218456

ABSTRACT

Shear induced particle pressure occurs in concentrated suspensions of particles. Importantly, the significance of the shear induced particle pressure has not been recognized in polymer rheology. The shear induced particle pressure results in an inward pressure on the polymer chains resulting in a shear dependent compressive force. The analytical form of the force balance equations that incorporate the effect of shear induced particle pressure predict a reduced polymer blob size and reducing viscosity with increasing shear rate as has been observed experimentally. Power law behavior is found for the viscosity in accord with the general observations for concentrated polymer rheology.

5.
Adv Colloid Interface Sci ; 234: 108-131, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27217082

ABSTRACT

The manipulation of biomolecules, fluid and ionic current in a new breed of integrated nanofluidic devices requires a quantitative understanding of electrokinetics at the silica/water interface. The conventional capacitor-based electrokinetic Electric Double Layer (EDL) models for this interface have some known shortcomings, as evidenced by a lack of consistency within the literature for the (i) equilibrium constants of surface silanol groups, (ii) Stern layer capacitance, (iii) zeta (ζ) potential measured by various electrokinetic methods, and (iv) surface conductivity. In this study, we consider how the experimentally observable viscoelectric effect - that is, the increase of the local viscosity due to the polarisation of polar solvents - affects electrokinetcs at the silica/water interface. Specifically we consider how a model that considers viscoelectric effects (the VE model) performs against two conventional electrokinetic models, namely the Gouy-Chapman (GC) and Basic Stern capacitance (BS) models, in predicting four fundamental electrokinetic phenomena: electrophoresis, electroosmosis, streaming current and streaming potential. It is found that at moderate to high salt concentrations (>5×10(-3)M) predictions from the VE model are in quantitative agreement with experimental electrokinetic measurements when the sole additional adjustable parameter, the viscoelectric coefficient, is set equal to a value given by a previous independent measurement. In contrast neither the GS nor BS models is able to reproduce all experimental data over the same concentration range using a single, robust set of parameters. Significantly, we also show that the streaming current and potential in the moderate to high surface charge range are insensitive to surface charge behaviour (including capacitances) when viscoelectric effects are considered, in difference to models that do not consider these effects. This strongly questions the validity of using pressure based electrokinetic experiments to measure surface charge characteristics within this experimentally relevant high pH and moderate to high salt concentration range. At low salt concentrations (<5×10(-3)M) we find that there is a lack of consistency in previously measured channel conductivities conducted under similar solution conditions (pH, salt concentration), preventing a conclusive assessment of any model suitability in this regime.

6.
Soft Matter ; 12(14): 3310-25, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-26954299

ABSTRACT

Using a recently developed multiphase electrokinetic model, we simulate the transient electrohydrodynamic response of a liquid drop containing ions, to both small and large values of electric field. The temporal evolution is found to be governed primarily by two dimensionless groups: (i) Ohnesorge number (Oh), a ratio of viscous to inertio-capillary effects, and (ii) inverse dimensionless Debye length (κ), a measure of the diffuse regions of charge that develop in the drop. The effects of dielectric polarization dominate at low Oh, while effects of separated charge gain importance with increase in Oh. For small values of electric field, the deformation behaviour of a drop is shown to be accurately described by a simple analytical expression. At large electric fields, the drops are unstable and eject progeny drops. Depending on Oh and κ this occurs via dripping or jetting; the regime transitions are shown by a Oh-κ phase map. In contrast to previous studies, we find universal scaling relations to predict size and charge of progeny drops. Our simulations suggest charge transport plays a significant role in drop dynamics for 0.1 ≤ Oh ≤ 10, a parameter range of interest in microscale flows.

8.
Anal Chem ; 86(17): 8711-8, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25098739

ABSTRACT

Isoelectric focusing of proteins in a silica nanofluidic channel filled with citric acid and disodium phosphate buffers is investigated via numerical simulation. Ions in the channel migrate in response to (i) the electric field acting on their charge and (ii) the bulk electroosmotic flow (which is directed toward the cathode). Proteins are focused near the low pH (anode) end when the electromigration effect is more significant and closer to the high pH (cathode) end when the electroosmotic effect dominates. We simulate the focusing behavior of Dylight labeled streptavidin (Dyl-Strep) proteins in the channel, using a relationship between the protein's charge and pH measured in a previous experiment. Protein focusing results compare well to previous experimental measurements. The effect of some key parameters, such as applied voltage, isoelectric point (pI), bulk pH, and bulk conductivity, on the protein trapping behavior in a nanofluidic channel is examined.


Subject(s)
Nanotechnology/methods , Proteins/chemistry , Silicon Dioxide/chemistry , Electrodes , Electroosmosis , Hydrogen-Ion Concentration , Isoelectric Focusing , Isoelectric Point , Nanotechnology/instrumentation
9.
Lab Chip ; 14(18): 3539-49, 2014 Sep 21.
Article in English | MEDLINE | ID: mdl-25027204

ABSTRACT

The simultaneous concentration gradient focusing and separation of proteins in a silica nanofluidic channel of various geometries is investigated experimentally and theoretically. Previous modelling of a similar device [Inglis et al., Angew. Chem. Int. Ed., 2011, 50, 7546] assumed a uniform velocity profile along the length of the nanochannel. Using detailed numerical analysis incorporating charge regulation and viscoelectric effects, we show that in reality the varying axial electric field and varying electric double layer thickness caused by the concentration gradient, induce a highly non-uniform velocity profile, fundamentally altering the protein trapping mechanism: the direction of the local electroosmotic flow reverses and two local vortices are formed near the centreline of the nanochannel at the low salt concentration end, enhancing trapping efficiency. Simulation results for yellow/red fluorescent protein R-PE concentration enhancement, peak focusing position and peak focusing width are in good agreement with experimental measurements, validating the model. The predicted separation of yellow/red (R-PE) from green (Dyl-Strep) fluorescent proteins mimics that from a previous experiment [Inglis et al., Angew. Chem. Int. Ed., 2011, 50, 7546] conducted in a slightly different geometry. The results will inform the design of new class of matrix-free particle focusing and separation devices.


Subject(s)
Electroosmosis , Nanostructures , Silicon Dioxide/chemistry , Silicon Dioxide/isolation & purification , Electroosmosis/instrumentation , Electroosmosis/methods , Green Fluorescent Proteins
10.
Langmuir ; 30(18): 5337-48, 2014 May 13.
Article in English | MEDLINE | ID: mdl-24725102

ABSTRACT

Previous work has demonstrated the simultaneous concentration and separation of proteins via a stable ion concentration gradient established within a nanochannel (Inglis Angew. Chem., Int. Ed. 2001, 50, 7546-7550). To gain a better understanding of how this novel technique works, we here examine experimentally and numerically how the underlying electric potential controlled ion concentration gradients can be formed and controlled. Four nanochannel geometries are considered. Measured fluorescence profiles, a direct indicator of ion concentrations within the Tris-fluorescein buffer solution, closely match depth-averaged fluorescence profiles calculated from the simulations. The simulations include multiple reacting species within the fluid bulk and surface wall charge regulation whereby the deprotonation of silica-bound silanol groups is governed by the local pH. The three-dimensional system is simulated in two dimensions by averaging the governing equations across the (varying) nanochannel width, allowing accurate numerical results to be generated for the computationally challenging high aspect ratio nanochannel geometries. An electrokinetic circuit analysis is incorporated to directly relate the potential drop across the (simulated) nanochannel to that applied across the experimental chip device (which includes serially connected microchannels). The merit of the thick double layer, potential-controlled concentration gradient as a particle focusing and separation tool is discussed, linking this work to the previously presented protein trapping experiments. We explain why stable traps are formed when the flow is in the opposite direction to the concentration gradient, allowing particle separation near the low concentration end of the nanochannel. We predict that tapered, rather than straight nanochannels are better at separating particles of different electrophoretic mobilities.


Subject(s)
Nanotechnology/methods , Hydrogen-Ion Concentration
11.
J Colloid Interface Sci ; 365(1): 1-15, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21978401

ABSTRACT

Existing microfluidic circuit theories consider conservation of volume and conservation of total charge at each channel intersection (node) that exists within a circuit. However, in a strict sense conservation of number (or charge) for each ion species that is present should also be applied. To be able to perform such a conservation the currents due to the movement of each ion species (electrokinetic ion currents) that occur within each channel need to be known. Hence, we here present analytical and numerical methods for calculating these ion currents (and fluid flowrates) in Newtonian binary electrolyte solutions flowing within two-dimensional thin slits and pipes. Analytical results are derived in the limits of low potential, high potential, and thin double layers. We show that irrespective of double layer overlap, the Boltzmann distribution is valid provided that a local geometric mean is used for the reference ion concentration. While the real significance of the work lies in its application to multi-channel microfluidic circuit theory (see the accompanying paper of Biscombe et al. [1]), the present results show that even in single channels, ion current behaviour can be surprisingly complex.

12.
J Colloid Interface Sci ; 365(1): 16-27, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21893321

ABSTRACT

A mathematical framework for analysing electrokinetic flow in microchannel networks is outlined. The model is based on conservation of volume and total charge at network junctions, but in contrast to earlier theories also incorporates conservation of ion charge there. The model is applied to mixed pressure-driven/electro-osmotic flows of binary electrolytes through homogeneous microchannels as well as a 4:1:4 contraction-expansion series network. Under conditions of specified volumetric flow rate and ion currents, non-linear steady-state phenomena may arise: when the direction of the net co-ion flux is opposite to the direction of the net volumetric flow, two different fully developed, steady-state flow solutions may be obtained. Model predictions are compared with two-dimensional computational fluid dynamics (CFD) simulations. For systems where two steady states are realisable, the ultimate steady behaviour is shown to depend in part upon the initial state of the system.

SELECTION OF CITATIONS
SEARCH DETAIL
...