Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(1): e54644, 2013.
Article in English | MEDLINE | ID: mdl-23372746

ABSTRACT

PURPOSE: The aim of this study was to utilize the proteomics-based Collaborative Enzyme Enhanced Reactive (CEER) immunoassay to investigate protein tyrosine phosphorylations as diagnostic markers in gastric cancers (GCs). EXPERIMENTAL DESIGN: Protein lysates from fresh-frozen 434 advanced stage GCs were analyzed for phosphorylation of HER1, HER2, p95HER2, HER3, cMET, IGF1R and PI3K. The pathway activation patterns were segregated based on the tumor HER2 status. Hierarchical clustering was utilized to determine pathway coactivations in GCs. Prognostic value of pathway activation patterns was determined by correlating disease-free survival times of the various GC subgroups using Kaplan-Meier survival analysis. CEER was also used to determine the presence of tyrosine phosphorylated signaling cascades in circulating tumor cells (CTCs) and ascites tumor cells (ATCs). RESULTS: Utilizing a novel diagnostics immunoassay, CEER, we demonstrate the presence of p95HER2 and concomitantly activated signaling pathways in GC tumor tissues, CTCs and ATCs isolated from GC patients for the first time. p95HER2 is expressed in ~77% of HER2(+) GCs. Approximately 54% of GCs have an activated HER1, HER2, HER3, cMET or IGF1R and demonstrate a poorer prognosis than those where these receptor tyrosine kinases (RTKs) are not activated. Hierarchical clustering of RTKs reveals co-clustering of phosphorylated HER1:cMET, HER2:HER3 and IGF1R-PI3K. Coactivation of HER1 with cMET renders GCs with a shorter disease-free survival as compared to only cMET activated GCs. CONCLUSIONS: Our study highlights the utility of a novel companion diagnostics technology, CEER that has strong implications for drug development and therapeutic monitoring. CEER is used to provide an increased understanding of activated signaling pathways in advanced GCs that can significantly improve their clinical management through accurate patient selection for targeted therapeutics.


Subject(s)
Proteomics/methods , Signal Transduction , Stomach Neoplasms/diagnosis , Stomach Neoplasms/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cluster Analysis , Enzyme Activation , Female , Gene Expression Regulation, Neoplastic , Genetic Variation , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Phosphorylation , Proto-Oncogene Proteins c-met/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptor, IGF Type 1/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/mortality
2.
Proteomics ; 5(13): 3314-28, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16041669

ABSTRACT

Separation of complex protein mixtures that have a wide dynamic range of concentration, such as plasma or serum, is a challenge for proteomic analysis. Sample preparation to remove high-abundant proteins is essential for proteomics analysis. Immunoglobulin yolk (IgY) antibodies have unique and advantageous features that enable specific protein removal to aid in the detection of low-abundant proteins and biomarker discovery. This report describes the efficiency and effectiveness of IgY microbeads in separating 12 abundant proteins from plasma with an immunoaffinity spin column or LC column. The protein separation and sample preparation process was monitored via SDS-PAGE, 2-DE, LC-MS/MS, or clinical protein assays. The data demonstrate the high specificity of the protein separation, with removal of 95-99.5% of the abundant proteins. IgY microbeads against human proteins can also selectively remove orthologous proteins of other mammals such as mouse, rat, etc. Besides the specificity and reproducibility of the IgY microbeads, the report discusses the factors that may cause potential variations in protein separation such as protein-protein interactions (known as "Interactome"), binding and washing conditions of immunoaffinity reagents, etc. A novel concept of Seppromics is introduced to address methodologies and science of protein separation in a context of proteomics.


Subject(s)
Blood Proteins/chemistry , Blood Proteins/isolation & purification , Immunoglobulins/chemistry , Microspheres , Proteomics/methods , Albumins/chemistry , Animals , Biomarkers/chemistry , Chromatography, Liquid , Edetic Acid/chemistry , Electrophoresis, Gel, Two-Dimensional , Electrophoresis, Polyacrylamide Gel , Humans , Mass Spectrometry , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...