Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cereb Cortex ; 25(4): 1042-51, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24165833

ABSTRACT

We used surface-based morphometry to test for differences in cortical shape between children with simplex autism (n = 34, mean age 11.4 years) and typical children (n = 32, mean age 11.3 years). This entailed testing for group differences in sulcal depth and in 3D coordinates after registering cortical midthickness surfaces to an atlas target using 2 independent registration methods. We identified bilateral differences in sulcal depth in restricted portions of the anterior-insula and frontal-operculum (aI/fO) and in the temporoparietal junction (TPJ). The aI/fO depth differences are associated with and likely to be caused by a shape difference in the inferior frontal gyrus in children with simplex autism. Comparisons of average midthickness surfaces of children with simplex autism and those of typical children suggest that the significant sulcal depth differences represent local peaks in a larger pattern of regional differences that are below statistical significance when using coordinate-based analysis methods. Cortical regions that are statistically significant before correction for multiple measures are peaks of more extended, albeit subtle regional differences that may guide hypothesis generation for studies using other imaging modalities.


Subject(s)
Autistic Disorder/pathology , Cerebral Cortex/pathology , Child , Female , Functional Laterality , Humans , Image Processing, Computer-Assisted , Intelligence Tests , Magnetic Resonance Imaging , Male , Organ Size , Psychiatric Status Rating Scales
2.
Neuroimage ; 59(3): 2539-47, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-21925612

ABSTRACT

Volume-based registration (VBR) is the predominant method used in human neuroimaging to compensate for individual variability. However, surface-based registration (SBR) techniques have an inherent advantage over VBR because they respect the topology of the convoluted cortical sheet. There is evidence that existing SBR methods indeed confer a registration advantage over affine VBR. Landmark-SBR constrains registration using explicit landmarks to represent corresponding geographical locations on individual and atlas surfaces. The need for manual landmark identification has been an impediment to the widespread adoption of Landmark-SBR. To circumvent this obstacle, we have implemented and evaluated an automated landmark identification (ALI) algorithm for registration to the human PALS-B12 atlas. We compared ALI performance with that from two trained human raters and one expert anatomical rater (ENR). We employed both quantitative and qualitative quality assurance metrics, including a biologically meaningful analysis of hemispheric asymmetry. ALI performed well across all quality assurance tests, indicating that it yields robust and largely accurate results that require only modest manual correction (<10 min per subject). ALI largely circumvents human error and bias and enables high throughput analysis of large neuroimaging datasets for inter-subject registration to an atlas.


Subject(s)
Cerebral Cortex/physiology , Adult , Algorithms , Brain Mapping , Cerebral Cortex/anatomy & histology , Echo-Planar Imaging , Female , Functional Laterality/physiology , Humans , Image Processing, Computer-Assisted , Male , Observer Variation , Reproducibility of Results , Software , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL