Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Great Lakes Res ; 45(3): 413-433, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-32831462

ABSTRACT

We analyzed 37 satellite reflectance algorithms and 321 variants for five satellites for estimating turbidity in a freshwater inland lake in Ohio using coincident real hyperspectral aircraft imagery converted to relative reflectance and dense coincident surface observations. This study is part of an effort to develop simple proxies for turbidity and algal blooms and to evaluate their performance and portability between satellite imagers for regional operational turbidity and algal bloom monitoring. Turbidity algorithms were then applied to synthetic satellite images and compared to in situ measurements of turbidity, chlorophyll-a (Chl-a), total suspended solids (TSS) and phycocyanin as an indicator of cyanobacterial/blue green algal (BGA) abundance. Several turbidity algorithms worked well with real Compact Airborne Spectrographic Imager (CASI) and synthetic WorldView-2, Sentinel-2 and Sentinel-3/MERIS/OLCI imagery. A simple red band algorithm for MODIS imagery and a new fluorescence line height algorithm for Landsat-8 imagery had limited performance with regard to turbidity estimation. Blue-Green Algae/Phycocyanin (BGA/PC) and Chl-a algorithms were the most widely applicable algorithms for turbidity estimation because strong co-variance of turbidity, TSS, Chl-a, and BGA made them mutual proxies in this experiment.

2.
Harmful Algae ; 76: 35-46, 2018 06.
Article in English | MEDLINE | ID: mdl-29887203

ABSTRACT

This study evaluated the performances of twenty-nine algorithms that use satellite-based spectral imager data to derive estimates of chlorophyll-a concentrations that, in turn, can be used as an indicator of the general status of algal cell densities and the potential for a harmful algal bloom (HAB). The performance assessment was based on making relative comparisons between two temperate inland lakes: Harsha Lake (7.99 km2) in Southwest Ohio and Taylorsville Lake (11.88 km2) in central Kentucky. Of interest was identifying algorithm-imager combinations that had high correlation with coincident chlorophyll-a surface observations for both lakes, as this suggests portability for regional HAB monitoring. The spectral data utilized to estimate surface water chlorophyll-a concentrations were derived from the airborne Compact Airborne Spectral Imager (CASI) 1500 hyperspectral imager, that was then used to derive synthetic versions of currently operational satellite-based imagers using spatial resampling and spectral binning. The synthetic data mimics the configurations of spectral imagers on current satellites in earth's orbit including, WorldView-2/3, Sentinel-2, Landsat-8, Moderate-resolution Imaging Spectroradiometer (MODIS), and Medium Resolution Imaging Spectrometer (MERIS). High correlations were found between the direct measurement and the imagery-estimated chlorophyll-a concentrations at both lakes. The results determined that eleven out of the twenty-nine algorithms were considered portable, with r2 values greater than 0.5 for both lakes. Even though the two lakes are different in terms of background water quality, size and shape, with Taylorsville being generally less impaired, larger, but much narrower throughout, the results support the portability of utilizing a suite of certain algorithms across multiple sensors to detect potential algal blooms through the use of chlorophyll-a as a proxy. Furthermore, the strong performance of the Sentinel-2 algorithms is exceptionally promising, due to the recent launch of the second satellite in the constellation, which will provide higher temporal resolution for temperate inland water bodies. Additionally, scripts were written for the open-source statistical software R that automate much of the spectral data processing steps. This allows for the simultaneous consideration of numerous algorithms across multiple imagers over an expedited time frame for the near real-time monitoring required for detecting algal blooms and mitigating their adverse impacts.


Subject(s)
Chlorophyll A/analysis , Environmental Monitoring/methods , Harmful Algal Bloom , Lakes/microbiology , Algorithms , Environmental Monitoring/instrumentation , Kentucky , Ohio , Satellite Imagery , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...