Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Biol ; 72(5): 485-95, 1997 Nov.
Article in English | MEDLINE | ID: mdl-9374428

ABSTRACT

Male Wistar rats were exposed to radon and its progeny (0.0, 60, 262 and 564 working level months, WLM), and the frequency of micronuclei was determined in deep lung fibroblasts, and deep lung, trachea and nasal epithelial cells with slopes of 0.28, 0.67, 0.34 and 0.11 micronuclei/1000 binucleated cells/WLM respectively. Micronuclei in deep lung fibroblasts, isolated and cultured using two methods and media, demonstrated no differences in slopes. Biological damage was used as a biodosimeter to calculate the relationship between dosimetric units: alpha particle traversals or 'nuclear hits', dose in mGy and exposure in WLM. The estimated number of nuclear alpha traversals/Gy was 6.3. Radon exposure to 170 WLM resulted in the same frequency of micronuclei in deep lung epithelial cells as produced by one alpha hit/cell nucleus. Absorbed dose/unit of exposure (mGy/WLM) was estimated assuming the damage was related to absorbed dose or to changes in cell sensitivity and ranged from 1.13 to 1.34 for deep lung epithelial cells, 0.47 to 1.09 for deep lung fibroblasts, 0.34 to 0.67 for tracheal epithelial cells and 0.18 to 0.33 for nasal epithelial cells. Biological dosimetry can be used to relate exposure to damage, compare dosimetric units and validate physical dosimetry models. This approach can be applied to any inhaled material capable of producing biological damage.


Subject(s)
Lung/radiation effects , Micronuclei, Chromosome-Defective/radiation effects , Nasal Mucosa/radiation effects , Radon/toxicity , Trachea/radiation effects , Animals , Cells, Cultured , Dose-Response Relationship, Radiation , Linear Energy Transfer , Lung/ultrastructure , Male , Rats , Rats, Wistar , Species Specificity
2.
Radiat Res ; 148(1): 90-7, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9216622

ABSTRACT

To understand the relationships between exposure and damage to different cell populations in the respiratory tract, methods were developed to culture deep-lung fibroblasts and epithelial cells from the nose, trachea and deep lungs. Female F-344 Fischer and male Wistar rats were exposed to 1-5 Gy of 60Co gamma rays at a dose rate of 0.4 Gy/min. Cells were isolated for short-term culture, and the incidences of binucleated cells and micronuclei were determined. The incidences of micronuclei were determined in cytochalasin-B-induced binucleated cells at 72 h for nasal and tracheal tissue and 96 h for deep-lung fibroblasts and epithelial cells. Maximum frequencies of binucleated cells were found in the control nonirradiated cells at these harvest times, and the frequencies were not significantly affected at these harvest times by radiation exposure. No significant differences were found in the frequencies of micronuclei induced in the nasal epithelial cells isolated from female F-344 Fischer or male Wistar rats. Fibroblasts cultured in different media and isolated from either female F-344 Fischer or male Wistar rats also showed a similar frequency of micronuclei. Over the doses tested, the frequency of micronuclei in the respiratory tract cells increased linearly with the dose. The slopes were 92.2 +/- 9.2, 76.2 +/- 7.9, 32.8 +/- 2.4 and 28.7 +/- 3.4 micronuclei/1000 binucleated cells/Gy for deep-lung epithelial cells, deep-lung fibroblasts, tracheal epithelial cells and nasal epithelial cells, respectively. Deep-lung epithelial or fibroblast cells were about two to three times as sensitive for elastogenic damage as nasal and tracheal epithelial cells. The measurement of micronuclei in isolated respiratory tract cells is very useful in assessing cytogenetic damage induced in different cell types by radiation.


Subject(s)
Gamma Rays , Lung/radiation effects , Mutagenesis/radiation effects , Nose/radiation effects , Trachea/radiation effects , Animals , Cell Division/drug effects , Epithelium/radiation effects , Female , Fibroblasts/radiation effects , Humans , Lung/cytology , Male , Micronuclei, Chromosome-Defective/ultrastructure , Nose/cytology , Rats , Rats, Inbred F344 , Rats, Wistar , Trachea/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...