Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 12(8)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37627544

ABSTRACT

Obesity is known as a transgenerational vicious cycle and has become a global burden due to its unavoidable complications. Modern approaches to obesity management often involve the use of pharmaceutical drugs and surgeries that have been associated with negative side effects. In contrast, natural antioxidants, such as flavonoids, have emerged as a promising alternative due to their potential health benefits and minimal side effects. Thus, this narrative review explores the potential protective role of flavonoids as a natural antioxidant in managing obesity. To identify recent in vivo studies on the efficiency of flavonoids in managing obesity, a comprehensive search was conducted on Wiley Online Library, Scopus, Nature, and ScienceDirect. The search was limited to the past 10 years; from the search, we identified 31 articles to be further reviewed. Based on the reviewed articles, we concluded that flavonoids offer novel therapeutic strategies for preventing obesity and its associated co-morbidities. This is because the appropriate dosage of flavonoid compounds is able to reduce adipose tissue mass, the formation of intracellular free radicals, enhance endogenous antioxidant defences, modulate the redox balance, and reduce inflammatory signalling pathways. Thus, this review provides an insight into the domain of a natural product therapeutic approach for managing obesity and recapitulates the transgenerational inheritance of obesity, the current available treatments to manage obesity and its side effects, flavonoids and their sources, the molecular mechanism involved, the modulation of gut microbiota in obesity, redox balance, and the bioavailability of flavonoids. In toto, although flavonoids show promising positive outcome in managing obesity, a more comprehensive understanding of the molecular mechanisms responsible for the advantageous impacts of flavonoids-achieved through translation to clinical trials-would provide a novel approach to inculcating flavonoids in managing obesity in the future as this review is limited to animal studies.

2.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36297373

ABSTRACT

Extensive knowledge related to medicinal characteristics of plants by living in forest or semi-forest habitats and close observations of indigenous communities have led to the discoveries of the genus Lepisanthes and its traditional uses. The genus Lepisanthes is a member of the Sapindaceae family and is found in various regions of the world. Six species of Lepisanthes such as L. alata, L. amoena, L. fruticosa, L. senegalensis, L. rubiginosa, and L. tetraphylla are widely utilized in traditional and folk medicinal systems. They have been used for centuries for the treatment of ailments or symptoms such as pain, dizziness, high fever, frequent passing of watery stool (diarrhea), abscess, and healing of cuts and wounds. Various methodological approaches, mainly in vitro studies, have been employed to further explore the roles of the genus Lepisanthes. The studies identified that the genus Lepisanthes exerts beneficial effects such as antioxidant, antimicrobial, antihyperglycemic, antimalarial, analgesic, and antidiarrheal. However, the summary of the available literature remains inconclusive. This review aims to comprehensively address the botany, traditional uses, phytochemistry, methods, and pharmacological properties of the six commonly used Lepisanthes species. Hence, our review provides a scientific consensus that may be essential in translating the pharmacological properties of the genus Lepisanthes into future novel cost-effective medicines.

3.
Nutrients ; 14(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36145254

ABSTRACT

Probiotics are widely used as an adjuvant therapy in various diseases. Nonetheless, it is uncertain how they affect the gut microbiota composition and metabolic and inflammatory outcomes in women who have recently experienced gestational diabetes mellitus (post-GDM). A randomized, double-blind, placebo-controlled clinical trial involving 132 asymptomatic post-GDM women was conducted to close this gap (Clinical Trial Registration: NCT05273073). The intervention (probiotics) group received a cocktail of six probiotic strains from Bifidobacterium and Lactobacillus for 12 weeks, while the placebo group received an identical sachet devoid of living microorganisms. Anthropometric measurements, biochemical analyses, and 16S rRNA gene sequencing results were evaluated pre- and post-intervention. After the 12-week intervention, the probiotics group's fasting blood glucose level significantly decreased (mean difference −0.20 mmol/L; p = 0.0021). The HbA1c, total cholesterol, triglycerides, and high-sensitivity C-reactive protein levels were significantly different between the two groups (p < 0.05). Sequencing data also demonstrated a large rise in the Bifidobacterium adolescentis following probiotic supplementation. Our findings suggest that multi-strain probiotics are beneficial for improved metabolic and inflammatory outcomes in post-GDM women by modulating gut dysbiosis. This study emphasizes the necessity for a comprehensive strategy for postpartum treatment that includes probiotics to protect post-GDM women from developing glucose intolerance.


Subject(s)
Diabetes, Gestational , Gastrointestinal Microbiome , Probiotics , Blood Glucose/metabolism , C-Reactive Protein , Cholesterol , Double-Blind Method , Female , Glycated Hemoglobin/metabolism , Humans , Pregnancy , Probiotics/therapeutic use , RNA, Ribosomal, 16S/genetics , Triglycerides
4.
Nutrients ; 13(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34578921

ABSTRACT

Dynamic interactions among gestational diabetes mellitus (GDM), gut microbiota, inflammation, oxidative stress, and probiotics are increasingly acknowledged. This meta-analysis aimed to summarize the effects of probiotics in GDM, focusing on lifestyle intervention and pre-intervention washout, in addition to metabolic, inflammation, oxidative stress, and pregnancy outcomes. Three electronic databases (i.e., PubMed, Scopus, and CENTRAL) were searched from inception until October 2020. A meta-analysis was performed, and the effect sizes were reported as either mean differences or odds ratios with 95% confidence intervals. Altogether, 10 randomized controlled trials enrolling 594 participants were included. The meta-analysis indicated that probiotics supplementation effectively reduced fasting plasma glucose by 3.10 mg/dL, and subgroup analyses suggested that the duration of intervention, number of species, pre-intervention washout period, and dietary intervention may determine the effects of probiotics. Probiotics also reduced the level of inflammatory markers (high-sensitivity C-reactive protein, interleukin-6, tumor necrosis factor-α, and malondialdehyde), incidence of macrosomia, and newborn hospitalization. In conclusion, this meta-analysis suggests that probiotics may have positive effects on metabolic, inflammation, oxidative stress, and neonatal outcomes in women with GDM. Additionally, diet and pre-intervention washout may modify the effects of probiotics. Future studies are warranted on a larger scale to ascertain the clinical significance.


Subject(s)
Blood Glucose/drug effects , Diabetes, Gestational/therapy , Diet/methods , Exercise , Gastrointestinal Microbiome/drug effects , Probiotics/therapeutic use , Adult , Female , Humans , Pregnancy , Randomized Controlled Trials as Topic
5.
Front Microbiol ; 12: 680622, 2021.
Article in English | MEDLINE | ID: mdl-34248897

ABSTRACT

Aberrant gut microbiota dysbiosis in women with a previous history of gestational diabetes mellitus (post-GDM) was comparable to that in adults with type 2 diabetes mellitus (T2DM). Nonetheless, potential relationships between diet, gut microbiota, and metabolic phenotypes in post-GDM women after delivery are yet to be discovered. In this research, we assessed the relationship of the macronutrient intakes, gut microbiota composition, and metabolic phenotypes (i.e., anthropometrics and glycemic control) in post-GDM women with and without postpartum glucose intolerance (GI). About 24 post-GDM women were included in this study, 14 women were grouped in the GI group and 10 women were grouped in the normal glucose tolerance (NGT) group according to oral glucose tolerance test. Macronutrient intake assessment using a 3-day dietary record, anthropometric measurements, biochemical analyses, and fecal sampling were done during 3-6 months postpartum. Gut microbiota profiling was determined using 16S rRNA genes sequencing targeting the V3-V4 regions. The relationships between macronutrient intakes, gut microbiota composition, and metabolic phenotypes were evaluated using Pearson's correlation coefficient and stepwise regression analyses. In this study, most post-GDM women had significantly poor dietary fiber adherence than the nutritional recommendations. Women from the GI group have significantly higher fasting blood glucose (FBG), HbA1c, and homeostasis model assessment-estimated insulin resistance (HOMA-IR) levels compared to the NGT group. The group also showed significant elevation of high-sensitivity C-reactive protein (hs-CRP) level when compared to the normal value. Specific gut microbial taxa derived from Proteobacteria and Bacteroidetes such as Parasutterella, Aquicella, Haliscomenobacter, and Prevotellaceae_NK3B31_group were significantly abundant in the GI group compared to the NGT group. Prevotellaceae_NK3B31_group was significantly associated with high FBG, HOMA-IR, and HbA1c levels. Low fiber and monounsaturated fatty acids intakes were associated with Lactobacillus. Meanwhile, Lactobacillus was associated with high body mass index, waist circumference, 2-h postprandial blood glucose, and hs-CRP levels. Our study suggested that macronutrient intake is an important predictor of gut microbiota dysbiosis and is associated with obesity, low-grade inflammation, and poor glycemic control in post-GDM women. Hence, dietary intake modification to remodel gut microbiota composition is a promising T2DM preventive strategy in post-GDM women.

6.
Article in English | MEDLINE | ID: mdl-32500037

ABSTRACT

Gestational diabetes mellitus (GDM) is defined as impaired glucose tolerance recognized during pregnancy. GDM is associated with metabolic disorder phenotypes, such as obesity, low-grade inflammation, and insulin resistance. Following delivery, nearly half of the women with a history of GDM have persistent postpartum glucose intolerance and an increased risk of developing type 2 diabetes mellitus (T2DM), as much as 7-fold. The alarming upward trend may worsen the socioeconomic burden worldwide. Accumulating evidence strongly associates gut microbiota dysbiosis in women with GDM, similar to the T2DM profile. Several metagenomics studies have shown gut microbiota, such as Ruminococcaceae, Parabacteroides distasonis, and Prevotella, were enriched in women with GDM. These microbiota populations are associated with metabolic pathways for carbohydrate metabolism and insulin signaling, suggesting a potential "gut microbiota signature" in women with GDM. Furthermore, elevated expression of serum zonulin, a marker of gut epithelial permeability, during early pregnancy in women with GDM indicates a possible link between gut microbiota and GDM. Nevertheless, few studies have revealed discrepant results, and the interplay between gut microbiota dysbiosis and host metabolism in women with GDM is yet to be elucidated. Lifestyle modification and pharmacological treatment with metformin showed evidence of modulation of gut microbiota and proved to be beneficial to maintain glucose homeostasis in T2DM. Nonetheless, post-GDM women have poor compliance toward lifestyle modification after delivery, and metformin treatment remains controversial as a T2DM preventive strategy. We hypothesized modulation of the composition of gut microbiota with probiotics supplementation may reverse postpartum glucose intolerance in post-GDM women. In this review, we addressed gut microbiota dysbiosis and the possible mechanistic links between the host and gut microbiota in women with GDM. Furthermore, this review highlights the potential therapeutic use of probiotics in post-GDM women as a T2DM preventive strategy.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes, Gestational , Gastrointestinal Microbiome , Bacteroidetes , Diabetes Mellitus, Type 2/therapy , Diabetes, Gestational/therapy , Female , Humans , Pregnancy
7.
Neural Regen Res ; 11(4): 630-5, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27212925

ABSTRACT

Traumatic brain injury (TBI) is a leading cause of death and disability in individuals worldwide. Producing a clinically relevant TBI model in small-sized animals remains fairly challenging. For good screening of potential therapeutics, which are effective in the treatment of TBI, animal models of TBI should be established and standardized. In this study, we established mouse models of closed head injury using the Shohami weight-drop method with some modifications concerning cognitive deficiency assessment and provided a detailed description of the severe TBI animal model. We found that 250 g falling weight from 2 cm height produced severe closed head injury in C57BL/6 male mice. Cognitive disorders in mice with severe closed head injury could be detected using passive avoidance test on day 7 after injury. Findings from this study indicate that weight-drop injury animal models are suitable for further screening of brain neuroprotectants and potentially are similar to those seen in human TBI.

SELECTION OF CITATIONS
SEARCH DETAIL
...