Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Cancer Res ; 17(11): 2233-2243, 2019 11.
Article in English | MEDLINE | ID: mdl-31467113

ABSTRACT

Despite the worldwide approval of three generations of EGFR tyrosine kinase inhibitors (TKI) for advanced non-small cell lung cancers with EGFR mutations, no TKI with a broad spectrum of activity against all clinically relevant mutations is currently available. In this study, we sought to evaluate a covalent mutation-specific EGFR TKI, TAS6417 (also named CLN-081), with the broadest level of activity against EGFR mutations with a prevalence of ≥1%. Lung cancer and genetically engineered cell lines, as well as murine xenograft models were used to evaluate the efficacy of TAS6417 and other approved/in-development EGFR TKIs (erlotinib, afatinib, osimertinib, and poziotinib). We demonstrate that TAS6417 is a robust inhibitor against the most common EGFR mutations (exon 19 deletions and L858R) and the most potent against cells harboring EGFR-T790M (first/second-generation TKI resistance mutation). In addition, TAS6417 has activity in cells driven by less common EGFR-G719X, L861Q, and S768I mutations. For recalcitrant EGFR exon 20 insertion mutations, selectivity indexes (wild-type EGFR/mutant EGFR ratio of inhibition) favored TAS6417 in comparison with poziotinib and osimertinib, indicating a wider therapeutic window. Taken together, we demonstrate that TAS6417 is a potent EGFR TKI with a broad spectrum of activity and a wider therapeutic window than most approved/in-development generations of EGFR inhibitors. IMPLICATIONS: TAS6417/CLN-081 is a potent EGFR TKI with a wide therapeutic window and may be effective in lung cancer patients with clinically relevant EGFR mutations.


Subject(s)
Antineoplastic Agents/pharmacology , Benzene Derivatives/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Acrylamides/pharmacology , Afatinib/pharmacology , Aniline Compounds/pharmacology , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Erlotinib Hydrochloride/pharmacology , Exons/genetics , Humans , Indolizines , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Mutation , Quinazolines/pharmacology
2.
Mol Cancer Ther ; 17(8): 1648-1658, 2018 08.
Article in English | MEDLINE | ID: mdl-29748209

ABSTRACT

Activating mutations in the EGFR gene are important targets in cancer therapy because they are key drivers of non-small cell lung cancer (NSCLC). Although almost all common EGFR mutations, such as exon 19 deletions and the L858R point mutation in exon 21, are sensitive to EGFR-tyrosine kinase inhibitor (TKI) therapies, NSCLC driven by EGFR exon 20 insertion mutations is associated with poor clinical outcomes due to dose-limiting toxicity, demonstrating the need for a novel therapy. TAS6417 is a novel EGFR inhibitor that targets EGFR exon 20 insertion mutations while sparing wild-type (WT) EGFR. In cell viability assays using Ba/F3 cells engineered to express human EGFR, TAS6417 inhibited EGFR with various exon 20 insertion mutations more potently than it inhibited the WT. Western blot analysis revealed that TAS6417 inhibited EGFR phosphorylation and downstream molecules in NSCLC cell lines expressing EGFR exon 20 insertions, resulting in caspase activation. These characteristics led to marked tumor regression in vivo in both a genetically engineered model and in a patient-derived xenograft model. Furthermore, TAS6417 provided a survival benefit with good tolerability in a lung orthotopic implantation mouse model. These findings support the clinical evaluation of TAS6417 as an efficacious drug candidate for patients with NSCLC harboring EGFR exon 20 insertion mutations. Mol Cancer Ther; 17(8); 1648-58. ©2018 AACR.


Subject(s)
Exons/genetics , Protein Kinase Inhibitors/therapeutic use , Animals , Disease Models, Animal , Female , Humans , Male , Mice , Mutation , Protein Kinase Inhibitors/pharmacology , Rats
3.
Cancer Med ; 6(1): 235-244, 2017 01.
Article in English | MEDLINE | ID: mdl-27891760

ABSTRACT

The prognosis of patients with Borrmann type IV gastric cancer (Type IV) is extremely poor. Thus, there is an urgent need to elucidate the molecular mechanisms underlying the oncogenesis of Type IV and to identify new therapeutic targets. Although previous studies using whole-exome and whole-genome sequencing have elucidated genomic alterations in gastric cancer, none has focused on comprehensive genetic analysis of Type IV. To discover cancer-relevant genes in Type IV, we performed whole-exome sequencing and genome-wide copy number analysis on 13 patients with Type IV. Exome sequencing identified 178 somatic mutations in protein-coding sequences or at splice sites. Among the mutations, we found a mutation in muscle RAS oncogene homolog (MRAS), which is predicted to cause molecular dysfunction. MRAS belongs to the Ras subgroup of small G proteins, which includes the prototypic RAS oncogenes. We analyzed an additional 46 Type IV samples to investigate the frequency of MRAS mutation. There were eight nonsynonymous mutations (mutation frequency, 17%), showing that MRAS is recurrently mutated in Type IV. Copy number analysis identified six focal amplifications and one homozygous deletion, including insulin-like growth factor 1 receptor (IGF1R) amplification. The samples with IGF1R amplification had remarkably higher IGF1R mRNA and protein expression levels compared with the other samples. This is the first report of MRAS recurrent mutation in human tumor samples. Our results suggest that MRAS mutation and IGF1R amplification could drive tumorigenesis of Type IV and could be new therapeutic targets.


Subject(s)
Mutation , Receptors, Somatomedin/genetics , Receptors, Somatomedin/metabolism , Sequence Analysis, DNA/methods , Stomach Neoplasms/pathology , ras Proteins/genetics , Adult , Aged , Aged, 80 and over , Exome , Female , Gene Amplification , Gene Expression Regulation, Neoplastic , Genetic Association Studies/methods , Humans , Male , Middle Aged , Mutation Rate , Receptor, IGF Type 1 , Sequence Deletion , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism
4.
Invest New Drugs ; 29(4): 534-43, 2011 Aug.
Article in English | MEDLINE | ID: mdl-20084424

ABSTRACT

Deregulation of cell-cycle control is a hallmark of cancer. Thus, cyclin-dependent kinases (Cdks) are an attractive target for the development of anti-cancer drugs. Here, we report the biological characterization of a highly potent pan-Cdk inhibitor with a macrocycle-quinoxalinone structure. Compound M inhibited Cdk1, 2, 4, 5, 6, and 9 with equal potency in the nM range and was selective against kinases other than Cdks. This compound inhibited multiple events in the cell cycle in vitro, including retinoblastoma protein (pRb) phosphorylation, E2F-dependent transcription, DNA replication (determined by bromodeoxyuridine incorporation), and mitosis completion (assayed by flow cytometry) in the 10 nM range. Moreover, this compound induced cell death, as determined by induction of the subG1 fraction, activated caspase-3, and anexin V. In vivo, Compound M showed anti-tumor efficacy at a tolerated dose. In a nude rat xenograft tumor model, an 8-h constant infusion of Compound M inhibited pRb phosphorylation and induced apoptosis in tumor cells at ~ 30 nM, which led to the inhibition of tumor growth. Immunosuppression was the only liability observed at this dose, but immune function returned to normal after 10 days. Suppression of pRb phosphorylation in tumor cells was clearly correlated with tumor cell growth inhibition and cell death in vitro and in vivo. In vivo, Compound M inhibited pRb phosphorylation in both tumor and gut crypt cells. Rb phosphorylation may be a suitable pharmacodynamic biomarker in both tumors and normal tissues for monitoring target engagement and predicting the efficacy of Compound M.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinases/antagonists & inhibitors , Macrocyclic Compounds/pharmacology , Quinoxalines/pharmacology , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/chemistry , Bromodeoxyuridine/metabolism , Cell Cycle/drug effects , Cell Death/drug effects , Cell Proliferation/drug effects , Cyclin-Dependent Kinases/metabolism , Dose-Response Relationship, Drug , Female , HCT116 Cells , Humans , Leukocyte Count , Macrocyclic Compounds/adverse effects , Macrocyclic Compounds/chemistry , Quinoxalines/adverse effects , Quinoxalines/chemistry , Rats , Rats, Nude , Substrate Specificity/drug effects , Xenograft Model Antitumor Assays
5.
Cell Cycle ; 9(8): 1590-600, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20372067

ABSTRACT

Abnormalities in the p16INK4a/ cyclin-dependent kinase (Cdk)4, 6/ Retinoblastoma (Rb) pathway frequently occur in various human cancers. Thus, Cdk4/6 is an attractive target for cancer therapy. Here we report the biological characterization of a 2-aminothiazole-derived Cdk4/6 selective inhibitor, named Compound A in vitro and in vivo. Compound A potently inhibits Cdk4 and Cdk6 with high selectivity (more than 57-fold) against other Cdks and 45 serine/threonine and tyrosine kinases. Compound A inhibits Rb protein (pRb) phosphorylation at Ser780, inhibits E2F-dependent transcription, and induces cell-cycle arrest at G1 in the T98G human glioma cell line. Among 82 human cells derived from various tissues, cell lines derived from hematological cancers (leukemia/lymphoma) tended to be more sensitive to Compound A in cell proliferation assay. Rb-negative cells tended to be insensitive to Compound A, as we had expected. In a nude rat xenograft model, Compound A inhibited pRb phosphorylation and bromodeoxyuridine (BrdU) incorporation in Eol-1 xenograft tumor at plasma concentration of 510 nM. Interestingly Compound A only moderately inhibited those pharmacodynamic and cell cycle parameters of normal crypt cells in small intestine even at 5 times higher plasma concentration. In F344 rats, Compound A did not cause immunosuppression even at 17 times higher plasma conc. These results suggest that Cdk4/6 selective inhibitors only moderately affects on the cell cycle of normal proliferating tissues and has a safer profile than pan-Cdk inhibitor in vivo.


Subject(s)
Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Thiazoles/pharmacology , Animals , Cell Line, Tumor , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , E2F Transcription Factors/antagonists & inhibitors , E2F Transcription Factors/metabolism , G1 Phase , Humans , Male , Phosphorylation , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , RNA Interference , RNA, Small Interfering/metabolism , Rats , Rats, Nude , Retinoblastoma Protein/antagonists & inhibitors , Retinoblastoma Protein/metabolism , Thiazoles/chemistry , Transplantation, Heterologous
6.
Mol Cancer Ther ; 9(1): 157-66, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20053775

ABSTRACT

Aurora-A kinase is a one of the key regulators during mitosis progression. Aurora-A kinase is a potential target for anticancer therapies because overexpression of Aurora-A, which is frequently observed in some human cancers, results in aberrant mitosis leading to chromosomal instability and possibly tumorigenesis. MK-5108 is a novel small molecule with potent inhibitory activity against Aurora-A kinase. Although most of the Aurora-kinase inhibitors target both Aurora-A and Aurora-B, MK-5108 specifically inhibited Aurora-A kinase in a panel of protein kinase assays. Inhibition of Aurora-A by MK-5108 in cultured cells induced cell cycle arrest at the G(2)-M phase in flow cytometry analysis. The effect was confirmed by the accumulation of cells with expression of phosphorylated Histone H3 and inhibition of Aurora-A autophosphorylation by immunostaining assays. MK-5108 also induced phosphorylated Histone H3 in skin and xenograft tumor tissues in a nude rat xenograft model. MK-5108 inhibited growth of human tumor cell lines in culture and in different xenograft models. Furthermore, the combination of MK-5108 and docetaxel showed enhanced antitumor activities compared with control and docetaxel alone-treated animals without exacerbating the adverse effects of docetaxel. MK-5108 is currently tested in clinical trials and offers a new therapeutic approach to combat human cancers as a single agent or in combination with existing taxane therapies.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cyclohexanecarboxylic Acids/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Taxoids/pharmacology , Thiazoles/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Aurora Kinase A , Aurora Kinase B , Aurora Kinases , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclohexanecarboxylic Acids/administration & dosage , Cyclohexanecarboxylic Acids/chemistry , Docetaxel , Humans , Inhibitory Concentration 50 , Mice , Mitosis/drug effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Rats , Taxoids/toxicity , Thiazoles/administration & dosage , Thiazoles/chemistry , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL