Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Nutrients ; 16(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931284

ABSTRACT

BACKGROUND: High-fat diets cause gut dysbiosis and promote triglyceride accumulation, obesity, gut permeability changes, inflammation, and insulin resistance. Both cocoa butter and fish oil are considered to be a part of healthy diets. However, their differential effects on gut microbiome perturbations in mice fed high concentrations of these fats, in the absence of sucrose, remains to be elucidated. The aim of the study was to test whether the sucrose-free cocoa butter-based high-fat diet (C-HFD) feeding in mice leads to gut dysbiosis that associates with a pathologic phenotype marked by hepatic steatosis, low-grade inflammation, perturbed glucose homeostasis, and insulin resistance, compared with control mice fed the fish oil based high-fat diet (F-HFD). RESULTS: C57BL/6 mice (5-6 mice/group) were fed two types of high fat diets (C-HFD and F-HFD) for 24 weeks. No significant difference was found in the liver weight or total body weight between the two groups. The 16S rRNA sequencing of gut bacterial samples displayed gut dysbiosis in C-HFD group, with differentially-altered microbial diversity or relative abundances. Bacteroidetes, Firmicutes, and Proteobacteria were highly abundant in C-HFD group, while the Verrucomicrobia, Saccharibacteria (TM7), Actinobacteria, and Tenericutes were more abundant in F-HFD group. Other taxa in C-HFD group included the Bacteroides, Odoribacter, Sutterella, Firmicutes bacterium (AF12), Anaeroplasma, Roseburia, and Parabacteroides distasonis. An increased Firmicutes/Bacteroidetes (F/B) ratio in C-HFD group, compared with F-HFD group, indicated the gut dysbiosis. These gut bacterial changes in C-HFD group had predicted associations with fatty liver disease and with lipogenic, inflammatory, glucose metabolic, and insulin signaling pathways. Consistent with its microbiome shift, the C-HFD group showed hepatic inflammation and steatosis, high fasting blood glucose, insulin resistance, increased hepatic de novo lipogenesis (Acetyl CoA carboxylases 1 (Acaca), Fatty acid synthase (Fasn), Stearoyl-CoA desaturase-1 (Scd1), Elongation of long-chain fatty acids family member 6 (Elovl6), Peroxisome proliferator-activated receptor-gamma (Pparg) and cholesterol synthesis (ß-(hydroxy ß-methylglutaryl-CoA reductase (Hmgcr). Non-significant differences were observed regarding fatty acid uptake (Cluster of differentiation 36 (CD36), Fatty acid binding protein-1 (Fabp1) and efflux (ATP-binding cassette G1 (Abcg1), Microsomal TG transfer protein (Mttp) in C-HFD group, compared with F-HFD group. The C-HFD group also displayed increased gene expression of inflammatory markers including Tumor necrosis factor alpha (Tnfa), C-C motif chemokine ligand 2 (Ccl2), and Interleukin-12 (Il12), as well as a tendency for liver fibrosis. CONCLUSION: These findings suggest that the sucrose-free C-HFD feeding in mice induces gut dysbiosis which associates with liver inflammation, steatosis, glucose intolerance and insulin resistance.


Subject(s)
Diet, High-Fat , Dysbiosis , Gastrointestinal Microbiome , Insulin Resistance , Animals , Male , Mice , Diet, High-Fat/adverse effects , Dietary Fats/adverse effects , Fatty Liver/etiology , Gastrointestinal Microbiome/drug effects , Liver/metabolism , Liver/drug effects , Mice, Inbred C57BL , Sucrose/adverse effects
2.
Front Endocrinol (Lausanne) ; 15: 1265799, 2024.
Article in English | MEDLINE | ID: mdl-38414818

ABSTRACT

Introduction: A high-fat/high-sucrose diet leads to adverse metabolic changes that affect insulin sensitivity, function, and secretion. The source of fat in the diet might inhibit or increase this adverse effect. Fish oil and cocoa butter are a significant part of our diets. Yet comparisons of these commonly used fat sources with high sucrose on pancreas morphology and function are not made. This study investigated the comparative effects of a fish oil-based high-fat/high-sucrose diet (Fish-HFDS) versus a cocoa butter-based high-fat/high-sucrose diet (Cocoa-HFDS) on endocrine pancreas morphology and function in mice. Methods: C57BL/6 male mice (n=12) were randomly assigned to dietary intervention either Fish-HFDS (n=6) or Cocoa-HFDS (n=6) for 22 weeks. Intraperitoneal glucose and insulin tolerance tests (IP-GTT and IP-ITT) were performed after 20-21 weeks of dietary intervention. Plasma concentrations of c-peptide, insulin, glucagon, GLP-1, and leptin were measured by Milliplex kit. Pancreatic tissues were collected for immunohistochemistry to measure islet number and composition. Tissues were multi-labelled with antibodies against insulin and glucagon, also including expression on Pdx1-positive cells. Results and discussion: Fish-HFDS-fed mice showed significantly reduced food intake and body weight gain compared to Cocoa-HFDS-fed mice. Fish-HFDS group had lower fasting blood glucose concentration and area under the curve (AUC) for both GTT and ITT. Plasma c-peptide, insulin, glucagon, and GLP-1 concentrations were increased in the Fish-HFDS group. Interestingly, mice fed the Fish-HFDS diet displayed higher plasma leptin concentration. Histochemical analysis revealed a significant increase in endocrine pancreas ß-cells and islet numbers in mice fed Fish-HFDS compared to the Cocoa-HFDS group. Taken together, these findings suggest that in a high-fat/high-sucrose dietary setting, the source of the fat, especially fish oil, can ameliorate the effect of sucrose on glucose homeostasis and endocrine pancreas morphology and function.


Subject(s)
Dietary Fats , Islets of Langerhans , Leptin , Male , Mice , Animals , Glucagon , Sucrose/adverse effects , Fish Oils/pharmacology , C-Peptide , Mice, Inbred C57BL , Islets of Langerhans/metabolism , Insulin , Glucose , Glucagon-Like Peptide 1/metabolism
3.
Front Immunol ; 14: 1273476, 2023.
Article in English | MEDLINE | ID: mdl-38094298

ABSTRACT

Type 1 diabetes (T1D) incidence has increased globally over the last decades, alongside other autoimmune diseases. Early screening of individuals at risk of developing T1D is vital to facilitate appropriate interventions and improve patient outcomes. This is particularly important to avoid life-threatening diabetic ketoacidosis and hospitalization associated with T1D diagnosis. Additionally, considering that new therapies have been developed for T1D, screening the population and individuals at high risk would be of great benefit. However, adopting such screening approaches may not be feasible due to limitations, such as cost, adaptation of such programs, and sample processing. In this perspective, we explore and highlight the use of multiplexing chemiluminescent assays for T1D screening and emphasize on their advantages in detecting multiple autoantibodies simultaneously, maximizing efficiency, and minimizing sample volume requirements. These assays could be extremely valuable for pediatric populations and large-scale screening initiatives, providing a cost-efficient solution with increased diagnostic accuracy and deeper insights into T1D pathogenesis. Eventually, the adoption of such screening methods can help transform T1D diagnosis, especially in countries with high T1D prevalence, such as Kuwait, which will contribute to the development of novel therapeutic interventions, positively impacting the lives of those affected by T1D and other autoimmune diseases.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus, Type 1 , Child , Humans , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/complications , Autoantibodies , Kuwait , Autoimmune Diseases/diagnosis , Autoimmune Diseases/complications
4.
Clin Transplant ; 37(12): e15144, 2023 12.
Article in English | MEDLINE | ID: mdl-37755118

ABSTRACT

INTRODUCTION: Cardiovascular and renal complications define the outcomes of diabetic kidney transplant recipients (KTRs). The new diabetes medications have changed the management of diabetes. However, transplant physicians are still reluctant to use sodium-glucose cotransporter 2 inhibitors (SGLT2i) and Glucagon-like peptide-1 receptor agonists (GLP-1RA) post kidney transplantation due to fear of drug related complications and lack of established guidelines. PATIENTS AND METHODS: We collected 1-year follow-up data from records of 98 diabetic KTRs on SGLT2I, 41 on GLP- 1RA and 70 on standard-of-care medicines. Patients were more than 3 months post-transplant with a minimum estimated glomerular filtration rate (eGFR) of 25 ml/min/1.73 m2 . Demographic data were similar except for a slightly lower HbA1c in the control group and higher albuminuria in SGLT2i group. RESULTS: HbA1c dropped significantly by .4% in both SGLT2i and GLP-1RA compared to .05% in the control group. A significant decrease in BMI by .32 in SGLT2i and .34 in GLP-1RA was observed compared to an increase by .015 in control group. A tendency for better eGFR in study groups was observed but was non-significant except for the SGLT2i group with an eGFR above 90 (p = .0135). The usual dip in eGFR was observed in the SGLT2i group at 1-3 months. Albuminuria was significantly reduced in both study groups. Adverse events were minimal with comparable safety in all groups. CONCLUSION: The use of SGLT2i and GLP-1RA appears to be effective and safe in diabetic KTRs with good outcomes. Randomized control trials are required to confirm these findings and establish guidelines.


Subject(s)
Diabetes Mellitus, Type 2 , Kidney Transplantation , Sodium-Glucose Transporter 2 Inhibitors , Symporters , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Hypoglycemic Agents/therapeutic use , Glucagon-Like Peptide-1 Receptor Agonists , Diabetes Mellitus, Type 2/drug therapy , Glycated Hemoglobin , Kidney Transplantation/adverse effects , Albuminuria , Symporters/therapeutic use , Glucose , Sodium/therapeutic use
5.
Leadersh Health Serv (Bradf Engl) ; ahead-of-print(ahead-of-print)2023 04 25.
Article in English | MEDLINE | ID: mdl-37093237

ABSTRACT

PURPOSE: This study aims to investigate the mediating effect of transformational leadership (TL) and work engagement (WE) on health-care clinic nurses' performance and the crucial role of these variables in the work environment (WEV). DESIGN/METHODOLOGY/APPROACH: Data were collected from 353 nurses working across various health-care clinics in the United Arab Emirates. This study used descriptive correlational statistics from the Statistical Package for the Social Sciences, the Pearson correlation coefficient, confirmatory factor analysis for model validity, Cronbach's alpha for reliability and path analysis to determine the results. FINDINGS: The relationship between TL and job performance among nurses in health-care clinics was strongly influenced by WE. In addition, a moderate WEV increased the positive influence of TL on job accomplishment. Furthermore, there were no statistically significant differences between the participants' demographics characteristics and the main variables of the study. PRACTICAL IMPLICATIONS: Health-care management can support and enhance nurses' job performance through TL, create a more structured WEV and support WE. ORIGINALITY/VALUE: This study involves a specific investigation into WE as a mediator, WEV as a moderator and the effect of TL on nurses' job performance.


Subject(s)
Nurses , Work Performance , Humans , Working Conditions , Leadership , Work Engagement , Reproducibility of Results , Job Satisfaction , Cross-Sectional Studies , Surveys and Questionnaires , Nurse's Role , Ambulatory Care Facilities
6.
Vaccines (Basel) ; 11(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36992080

ABSTRACT

There is limited seroepidemiological evidence on the magnitude and long-term durability of antibody titers of mRNA and non-mRNA vaccines in the Qatari population. This study was conducted to generate evidence on long-term anti-S IgG antibody titers and their dynamics in individuals who have completed a primary COVID-19 vaccination schedule. A total of 300 male participants who received any of the following vaccines BNT162b2/Comirnaty, mRNA-1273, ChAdOx1-S/Covishield, COVID-19 Vaccine Janssen/Johnson, or BBIBP-CorV or Covaxin were enrolled in our study. All sera samples were tested by chemiluminescent microparticle immunoassay (CMIA) for the quantitative determination of IgG antibodies to SARS-CoV-2, receptor-binding domain (RBD) of the S1 subunit of the spike protein of SARS-CoV-2. Antibodies against SARS-CoV-2 nucleocapsid (SARS-CoV-2 N-protein IgG) were also determined. Kaplan-Meier survival curves were used to compare the time from the last dose of the primary vaccination schedule to the time by which anti-S IgG antibody titers fell into the lowest quartile (range of values collected) for the mRNA and non-mRNA vaccines. Participants vaccinated with mRNA vaccines had higher median anti-S IgG antibody titers. Participants vaccinated with the mRNA-1273 vaccine had the highest median anti-S-antibody level of 13,720.9 AU/mL (IQR 6426.5 to 30,185.6 AU/mL) followed by BNT162b2 (median, 7570.9 AU/mL; IQR, 3757.9 to 16,577.4 AU/mL); while the median anti-S antibody titer for non-mRNA vaccinated participants was 3759.7 AU/mL (IQR, 2059.7-5693.5 AU/mL). The median time to reach the lowest quartile was 3.53 months (IQR, 2.2-4.5 months) and 7.63 months (IQR, 6.3-8.4 months) for the non-mRNA vaccine recipients and Pfizer vaccine recipients, respectively. However, more than 50% of the Moderna vaccine recipients did not reach the lowest quartile by the end of the follow-up period. This evidence on anti-S IgG antibody titers should be considered for informing decisions on the durability of the neutralizing activity and thus protection against infection after the full course of primary vaccination in individuals receiving different type (mRNA verus non-mRNA) vaccines and those with natural infection.

7.
J Inflamm Res ; 15: 5665-5675, 2022.
Article in English | MEDLINE | ID: mdl-36238761

ABSTRACT

Purpose: Severe coronavirus disease 2019 (COVID-19) is linked to insufficient control of viral replication and excessive inflammation driven by an unbalanced immune response. Plasmacytoid dendritic cells (pDCs) are specialized in the rapid production of interferons in response to viral infections, and can also prime and activate T-cells. Conventional DCs (cDCs) are critical for the elimination of viral infections owing to their specialized ability to prime and activate T cells. We assessed the frequency and phenotype of pDCs and cDCs in survivors and non-survivors of COVID-19. Patients and methods: Patients with COVID-19 were enrolled, and 22 were included in this study. Peripheral whole blood was obtained during the 2nd week of illness, stained with antibodies specific for lineage markers, human leukocyte antigen-DR isotype (HLA-DR), CD11c, and CD123, and analyzed by flow cytometry. Patients were followed-up during hospital admission and grouped into survivors (n=17) and non-survivors (n=5) of COVID-19. Results: The ratio of pDCs to pre-cDCs was significantly lower (P=0.0005) in non-survivors compared to survivors. The frequency of pDCs was significantly higher than cDC2-like cells (P=0.0002) and pre-cDCs (P<0.0001) in survivors but not in non-survivors. HLA-DR expression level on pDCs and cDC2-like cells was lower in non-survivors compared to survivors (P=0.02 and P=0.058, respectively), and HLA-DR was inversely correlated with disease severity rating (pDCs: r= -0.47, P=0.027; cDC2-like cells: r= -0.45, P=0.037). CD123 expression level on pDCs was significantly lower (P=0.038) in non-survivors compared to survivors, and CD123 was inversely correlated with disease severity rating (r=-0.5, P=0.016). CD11c expression level on cDC2-like cells was significantly lower (P=0.03) in non-survivors compared to survivors, and CD11c was inversely correlated with disease severity rating (r=-0.47, P=0.025). Conclusion: A lower frequency of pDCs compared to other circulating DCs, and lower expression levels of HLA-DR, CD123 or CD11c on DCs is associated with fatal COVID-19.

8.
Cells ; 11(19)2022 09 29.
Article in English | MEDLINE | ID: mdl-36231033

ABSTRACT

Chronic low-grade inflammation induced by obesity is a central risk factor for the development of metabolic syndrome. High low-density lipoprotein cholesterol (LDL-c) induces inflammation, which is a common denominator in metabolic syndrome. IL-23 plays a significant role in the pathogenesis of meta-inflammatory diseases; however, its relationship with LDL-c remains elusive. In this cross-sectional study, we determined whether the adipose tissue IL-23 expression was associated with other inflammatory mediators in people with increased plasma LDL-c concentrations. Subcutaneous adipose tissue biopsies were collected from 60 people, sub-divided into two groups based on their plasma LDL-c concentrations (<2.9 and ≥2.9 mmol/L). Adipose expression of IL-23 and inflammatory markers were determined using real-time qRT-PCR; plasma concentrations of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-c) and LDL-c were determined using the standard method; and adiponectin levels were measured by enzyme-linked immunosorbent assay (ELISA). Adipose IL-23 transcripts were found to be increased in people with high LDL-c, compared to low LDL-c group (H-LDL-c: 1.63 ± 0.10-Fold; L-LDL-c: 1.27 ± 0.09-Fold; p < 0.01); IL-23 correlated positively with LDL-c (r = 0.471, p < 0.0001). Immunochemistry analysis showed that AT IL-23 protein expression was also elevated in the people with H-LDL-c. IL-23 expression in the high LDL-c group was associated with multiple adipose inflammatory biomarkers (p ≤ 0.05), including macrophage markers (CD11c, CD68, CD86, CD127), TLRs (TLR8, TLR10), IRF3, pro-inflammatory cytokines (TNF-α, IL-12, IL-18), and chemokines (CXCL8, CCL3, CCL5, CCL15, CCL20). Notably, in this cohort, IL-23 expression correlated inversely with plasma adiponectin. In conclusion, adipose IL-23 may be an inflammatory biomarker for disease progression in people with high LDL-c.


Subject(s)
Hyperlipidemias , Interleukin-23 Subunit p19/metabolism , Metabolic Syndrome , Adiponectin/metabolism , Adipose Tissue/metabolism , Biomarkers/metabolism , Chemokines/metabolism , Cholesterol/metabolism , Cholesterol, HDL , Cholesterol, LDL/metabolism , Cross-Sectional Studies , Cytokines/metabolism , Humans , Hyperlipidemias/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Interleukin-12/metabolism , Interleukin-18/metabolism , Interleukin-23/metabolism , Metabolic Syndrome/metabolism , Toll-Like Receptor 8/metabolism , Triglycerides/metabolism , Tumor Necrosis Factor-alpha/metabolism
9.
Vaccines (Basel) ; 10(8)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-36016114

ABSTRACT

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) is associated with increased risk of thrombosis and thromboembolism. Exposure to COVID-19 vaccines is also associated with immune thrombotic thrombocytopenia, ischemic stroke, intracerebral haemorrhage, and cerebral venous thrombosis, and it is linked with systemic activation of coagulation. METHODS: We assess the circulating levels of coagulation factors (factors XI, XII, XIII, and prothrombin) and antithrombin in individuals who completed two doses of either ChAdOx1-S or BNT162b2 COVID-19 vaccine, within the timeframe of two months, who had no previous history of COVID-19. RESULTS: Elevated levels of factors XI, XII, XIII, prothrombin, and antithrombin were seen compared to unvaccinated controls. Levels of coagulation factors, antithrombin, and prothrombin to antithrombin ratio were higher with BNT162b2 compared to ChAdOx1-S vaccine. CONCLUSIONS: The clinical significance of such coagulation homeostasis disruption remains to be elucidated but it is worthy of global scientific follow-up effort.

10.
J Inflamm Res ; 15: 4291-4302, 2022.
Article in English | MEDLINE | ID: mdl-35923906

ABSTRACT

Background: Overexpression of CCL2 (MCP-1) has been implicated in pathogenesis of metabolic conditions, such as obesity and T2D. However, the mechanisms leading to increased CCL2 expression in obesity are not fully understood. Since both IFN-γ and LPS levels are found to be elevated in obesity and shown to be involved in the regulation of metabolic inflammation and insulin resistance, we investigated whether these two agents could synergistically trigger the expression of CCL2 in obesity. Methods: Monocytes (Human monocytic THP-1 cells) were stimulated with IFN-γ and LPS. CCL2 gene expression was determined by real-time RT-PCR. CCL2 protein was determined by ELISA. Signaling pathways were identified by using epigenetic inhibitors and STAT1 siRNA. Acetylation of H3K27 was analyzed by Western blotting. The acetylation level of histone H3K27 in the transcriptional initiation region of CCL2 gene was determined by ChIP-qPCR. Results: Our results show that the co-incubation of THP-1 monocytes with IFN-γ and LPS significantly enhanced the expression of CCL2, compared to treatment with IFN-γ or LPS alone. Similar results were obtained using primary monocytes and macrophages. Interestingly, IFN-γ priming was found to be more effective than LPS priming in inducing synergistic expression of CCL2. Moreover, STAT1 deficiency significantly suppressed this synergy for CCL2 expression. Mechanistically, we showed that IFN-γ priming induced acetylation of lysine 27 on histone 3 (H3K27ac) in THP-1 cells. Chromatin immunoprecipitation (ChIP) assay followed by qRT-PCR revealed increased H3K27ac at the CCL2 promoter proximal region, resulting in stabilized gene expression. Furthermore, inhibition of histone acetylation with anacardic acid suppressed this synergistic response, whereas trichostatin A (TSA) could substitute IFN-γ in this synergy. Conclusion: Our findings suggest that IFN-γ, in combination with LPS, has the potential to augment inflammation via the H3K27ac-mediated induction of CCL2 in monocytic cells in the setting of obesity.

11.
Hum Vaccin Immunother ; 17(11): 4121-4125, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34543154

ABSTRACT

Current vaccines, which induce a B-cell-mediated antibody response against the spike protein of SARS-CoV-2, have markedly reduced infection rates. However, the emergence of new variants as a result of SARS-CoV-2 evolution requires the development of novel vaccines that are T-cell-based and that target mutant-specific spike proteins along with ORF1ab or nucleocapsid protein. This approach is more accommodative in inducing highly neutralizing antibodies, without the risk of antibody-dependent enhancement, as well as memory CD8+T-cell immunity.


Subject(s)
Antibody-Dependent Enhancement , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Humans , RNA, Messenger , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
12.
Biomolecules ; 11(9)2021 09 13.
Article in English | MEDLINE | ID: mdl-34572567

ABSTRACT

IP-10 (also called CXCL10) plays a significant role in leukocyte homing to inflamed tissues, and increased IP-10 levels are associated with the pathologies of various inflammatory disorders, including type 2 diabetes, atherosclerosis, and cancer. TNF-α is a potent activator of immune cells and induces inflammatory cytokine expression in these cells. However, it is unclear whether TNF-α is able to induce IP-10 expression in MCF-7 breast cancer cells. We therefore determined IP-10 expression in TNF-α-treated MCF-7 cells and investigated the mechanism involved. Our data show that TNF-α induced/upregulated the IP-10 expression at both mRNA and protein levels in MCF-7 cells. Inhibition of JNK (SP600125) significantly suppressed the TNF-α-induced IP-10 in MCF-7 cells, while the inhibition of p38 MAPK (SB203580), MEK1/2 (U0126), and ERK1/2 (PD98059) had no significant effect. Furthermore, TNF-α-induced IP-10 expression was abolished in MCF-7 cells deficient in JNK. Similar results were obtained using MCF-7 cells deficient in c-Jun. Moreover, the JNK kinase inhibitor markedly reduced the TNF-α-induced JNK and c-Jun phosphorylation. The kinase activity of JNK induced by TNF-α stimulation of MCF-7 cells was significantly inhibited by SP600125. Altogether, our novel findings provide the evidence that TNF-α induces IP-10 expression in MCF-7 breast cancer cells via activation of the JNK/c-Jun signaling pathway.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Chemokine CXCL10/metabolism , MAP Kinase Signaling System , Proto-Oncogene Proteins c-jun/metabolism , Tumor Necrosis Factor-alpha/metabolism , Chemokine CXCL10/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Proto-Oncogene Proteins c-jun/deficiency , Up-Regulation/genetics
13.
Endocrinol Diabetes Metab ; 4(4): e00287, 2021 10.
Article in English | MEDLINE | ID: mdl-34505420

ABSTRACT

INTRODUCTION: To investigate type 2 diabetes as a risk factor for COVID-19 death following hospital admission in Kuwait. METHODS: A retrospective cohort study using data from a central hospital that cared for all hospitalized COVID-19 patients in Kuwait. We investigated the association between type 2 diabetes, with COVID-19 mortality using multiply imputed logistic regression and calculated the population attributable fraction. RESULTS: A total of 5333 patients were admitted with COVID-19, of whom 244 died (4.6%). Diabetes prevalence was 24.8%, but 53.7% of those who died had diabetes. After adjusting for age, sex, ethnicity and other comorbidities, diabetes was associated with death (OR 1.70 [95% CI 1.23, 2.34]) and admission to the intensive care unit more than 3 days after initial admission (OR 1.78 [95% CI 1.17, 2.70]). Assuming causality, the population attributable fraction for type 2 diabetes in COVID-19 death was 19.6% (95% CI 10.8, 35.6). CONCLUSION: Type 2 diabetes is a strong risk factor for COVID-19 death in the Middle East. Given the high prevalence of type 2 diabetes in the Middle East, as well as many Western countries, the public health implications are considerable.


Subject(s)
COVID-19/mortality , Diabetes Mellitus, Type 2/mortality , Adult , Aged , COVID-19/epidemiology , Comorbidity , Diabetes Mellitus, Type 2/epidemiology , Female , Hospital Mortality , Hospitalization , Humans , Inpatients , Intensive Care Units , Kuwait/epidemiology , Male , Middle Aged , Prevalence , Retrospective Studies , Risk
14.
Immunotargets Ther ; 10: 63-85, 2021.
Article in English | MEDLINE | ID: mdl-33728277

ABSTRACT

Coronavirus disease 2019 (Covid-19), caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can range in severity from asymptomatic to severe/critical disease. SARS-CoV-2 uses angiotensin-converting enzyme 2 to infect cells leading to a strong inflammatory response, which is most profound in patients who progress to severe Covid-19. Recent studies have begun to unravel some of the differences in the innate and adaptive immune response to SARS-CoV-2 in patients with different degrees of disease severity. These studies have attributed the severe form of Covid-19 to a dysfunctional innate immune response, such as a delayed and/or deficient type I interferon response, coupled with an exaggerated and/or a dysfunctional adaptive immunity. Differences in T-cell (including CD4+ T-cells, CD8+ T-cells, T follicular helper cells, γδ-T-cells, and regulatory T-cells) and B-cell (transitional cells, double-negative 2 cells, antibody-secreting cells) responses have been identified in patients with severe disease compared to mild cases. Moreover, differences in the kinetic/titer of neutralizing antibody responses have been described in severe disease, which may be confounded by antibody-dependent enhancement. Importantly, the presence of preexisting autoantibodies against type I interferon has been described as a major cause of severe/critical disease. Additionally, priorVaccine and multiple vaccine exposure, trained innate immunity, cross-reactive immunity, and serological immune imprinting may all contribute towards disease severity and outcome. Several therapeutic and preventative approaches have been under intense investigations; these include vaccines (three of which have passed Phase 3 clinical trials), therapeutic antibodies, and immunosuppressants.

15.
J Clin Endocrinol Metab ; 106(2): 309-317, 2021 01 23.
Article in English | MEDLINE | ID: mdl-33336682

ABSTRACT

BACKGROUND: Whilst skeletal muscles' primary role is allowing movement, it has important metabolic roles, including in glycemic control. Indeed, evidence indicates that low muscle mass and function are associated with an increased risk of type 2 diabetes, highlighting its importance in the development of metabolic disease. METHODS: In this mini-review, we detail the evidence highlighting the importance of muscle in type 2 diabetes and the efficacy of resistance exercise in improving glycemic control alongside our approach to increase uptake of such exercise in people with type 2 diabetes. This summary is based in the authors' knowledge of the filed supplemented by a Pubmed search using the terms "muscle," "glycemic control," "HbA1c," "type 2 diabetes," and "resistance exercise." RESULTS: The main strategy to increases muscle mass is to perform resistance exercise and, although the quality of evidence is low, such exercise appears effective in reducing Glycated Haemoglobin (HbA1c) in people with type 2 diabetes. However, to increase participation we need to improve our understanding of barriers and facilitators to such exercise. Current data indicate that barriers are similar to those reported for aerobic exercise, with additional resistance exercise specific barriers of looking to muscular, increase risk of cardiovascular event, having access to specialized equipment and knowledge of how to use it. CONCLUSIONS: The development of simple resistance exercises that can be performed anywhere, that use little or no equipment and are effective in reducing HbA1c will be, in our opinion, key to increasing the number of people with type 2 diabetes performing resistance exercise.


Subject(s)
Diabetes Mellitus, Type 2/rehabilitation , Exercise Therapy/methods , Muscle, Skeletal/physiology , Muscular Diseases/prevention & control , Humans , Prognosis , Quality of Life
16.
Diabetes Metab Syndr Obes ; 13: 3839-3859, 2020.
Article in English | MEDLINE | ID: mdl-33116731

ABSTRACT

PURPOSE: The suppression of tumorigenicity 2 (ST2) has two main splice variants including a membrane bound (ST2) form, which activates the myeloid differentiation primary response 88 (MyD88)/nuclear factor-kappa B (NF-κB) signaling pathway, and a secreted soluble form (sST2), which acts as a decoy receptor for ST2 ligand, interleukin (IL)-33. The IL-33/ST2 axis is protective against obesity, insulin resistance, and type 2 diabetes (T2D). In humans, adipose tissue IL-33 displays distinct correlation profiles with glycated hemoglobin, ST2, and other immunometabolic mediators, depending on the glycemic health of the individuals. We determined whether adipose tissue ST2 displays distinct correlation profiles with immunometabolic mediators and whether ST2 and/or IL-33 are correlated with intracellular signaling molecules. PATIENTS AND METHODS: A total of 91 adults with normal glycemia, prediabetes, and T2D were included. After measuring their anthropometric and biochemical parameters, subcutaneous adipose tissues were isolated and mRNA expression of biomarkers was measured. RESULTS: In individuals with normal glycemia, adipose tissue ST2 was directly correlated with chemokine (C-C motif) ligand (CCL)-2, CCL5, IL-12, fibrinogen-like protein 2 (FGL2) and interferon regulatory factor (IRF)-4, but inversely correlated with cytochrome C oxidase subunit 7A1. IL-33 and ST2 were directly correlated with tumor necrosis factor receptor-associated factor 6 (TRAF6), NF-κB, and nuclear factor of activated T-cells 5 (NFAT5). In individuals with prediabetes, ST2 was inversely correlated with IL-5, whereas IL-33 but not ST2 was directly correlated with MyD88 and NF-κB. In individuals with T2D, ST2 was directly correlated with CCL2, IL-1ß, and IRF5. IL-33 and ST2 were directly correlated with MyD88, TRAF6, and NF-κB. CONCLUSION: Adipose tissue ST2 and IL-33 show different correlation profiles with various immunometabolic biomarkers depending on the metabolic state of the individuals. Therefore, targeting the IL-33/ST2 axis might form the basis for novel therapies to combat metabolic disorders.

17.
Biomedicines ; 8(10)2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33050324

ABSTRACT

Increased circulatory and adipose tissue expression of macrophage inflammatory protein (MIP)-1α (CC motif chemokine ligand-3/CCL3) and its association with inflammation in the state of obesity is well documented. Since obesity is associated with increases in both stearic acid and tumor necrosis factor α (TNF-α) in circulation, we investigated whether stearic acid and TNF-α together could regulate MIP-1α/CCL3 expression in human monocytic cells, and if so, which signaling pathways were involved in MIP-1α/CCL3 modulation. Monocytic cells were treated with stearic acid and TNF-α resulted in enhanced production of MIP-1α/CCL3 compared to stearic acid or TNF-α alone. To explore the underlying mechanisms, cooperative effect of stearic acid for MIP-α/CCL3 expression was reduced by TLR4 blocking, and unexpectedly we found that the synergistic production of MIP-α/CCL3 in MyD88 knockout (KO) cells was not suppressed. In contrast, this MIP-α/CCL3 expression was attenuated by inhibiting TBK1/IRF3 activity. Cells deficient in IRF3 did not show cooperative effect of stearate/TNF-α on MIP-1α/CCL3 production. Furthermore, activation of IRF3 by polyinosinic-polycytidylic acid (poly I:C) produced a cooperative effect with TNF-α for MIP-1α/CCL3 production that was comparable to stearic acid. Individuals with obesity show high IRF3 expression in monocytes as compared to lean individuals. Furthermore, elevated levels of MIP-1α/CCL3 positively correlate with TNF-α and CD163 in fat tissues from individuals with obesity. Taken together, this study provides a novel model for the pathologic role of stearic acid to produce MIP-1α/CCL3 in the presence of TNF-α associated with obesity settings.

18.
Diabetes Metab Syndr Obes ; 13: 2711-2718, 2020.
Article in English | MEDLINE | ID: mdl-32801817

ABSTRACT

PURPOSE: Cardiovascular disease can be detected in individuals with prediabetes. The purpose of this study was to determine whether soluble suppression of tumorigenicity 2 (sST2), which is elevated in cardiovascular disease and/or type 2 diabetes, is correlated with glycated haemoglobin in individuals with glycemia in the normal/prediabetes range. PATIENTS AND METHODS: The anthropometric, biochemical and metabolic parameters were measured in 30 adults, and the plasma levels of sST2 were quantified. RESULTS: sST2 was directly correlated with glycated hemoglobin in individuals with glycemia in the normal/prediabetes range. Participants who were at the higher end of glycated hemoglobin (5.8-6.4%) had significantly higher sST2 compared to those at the lower end (≤5.5%). Moreover, sST2 was directly correlated with homeostatic model assessment of insulin resistance (HOMA-IR), alkaline phosphatase, and waist circumference. However, the correlation between sST2 and HOMA-IR or waist circumference was lost after adjusting for age, gender or body mass index. CONCLUSION: Circulating sST2 may be used to establish a cut-off value for cardiometabolic risk/disease in individuals with glycemia in the normal/prediabetes range.

19.
Int J Mol Sci ; 20(17)2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31443599

ABSTRACT

Elevated levels of IL-8 (CXCL8) in obesity have been linked with insulin resistance and type 2 diabetes (T2D). The mechanisms that lead to the profound production of IL-8 in obesity remains to be understood. TNF-α and saturated free fatty acids (FFAs) are increased in obese humans and correlate with insulin resistance. Hence, we sought to investigate whether the cooccurrence of TNF-α and FFAs led to increase the production of IL-8 by human monocytes. We found that co-stimulation of human monocytes with palmitate and TNF-α led to increased IL-8 production as compared to those stimulated with palmitate or TNF-α alone. The synergistic production of IL-8 by TNF-α/palmitate was suppressed by neutralizing anti- Toll like receptor 4 (TLR4) antibody and by genetic silencing of TLR4. Both MyD88-deficient and MyD88-competent cells responded comparably to TNF-α/Palmitate. However, TIR-domain-containing adapter-inducing interferon (TRIF) inhibition or interferon regulatory transcription factor 3 (IRF3) knockdown partly blocked the synergistic production of IL-8. Our human data show that increased adipose tissue TNF-α expression correlated positively with IL-8 expression (r = 0.49, P = 0.001). IL-8 and TNF-α correlated positively with macrophage markers including CD68, CD163 and CD86 in adipose tissue. These findings suggest that the signaling cross-talk between saturated fatty acid palmitate and TNF-α may be a key driver in obesity-associated chronic inflammation via an excessive production of IL-8.


Subject(s)
Inflammation/metabolism , Interleukin-8/metabolism , Myeloid Differentiation Factor 88/metabolism , Palmitates/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism , Adult , Cell Line , Humans , Middle Aged , Overweight/metabolism , Signal Transduction
20.
Dis Markers ; 2019: 7901062, 2019.
Article in English | MEDLINE | ID: mdl-31073344

ABSTRACT

INTRODUCTION: Interleukin-33 (IL-33), the ligand for the receptor ST2, is abundant in adipose tissue, including preadipocytes, adipocytes, and endothelial cells. The IL-33/ST2 axis is protective against obesity, insulin resistance, and type 2 diabetes (T2D) in animal models. We determined whether adipose tissue IL-33 was associated with glycated hemoglobin (HbA1c), as well as mediators of inflammation and immune regulation and beiging of adipose tissue, among individuals with varying degrees of glycemia. MATERIALS AND METHODS: A total of 91 adults with normoglycemia, prediabetes, and T2D were included. After measuring their anthropometric and biochemical parameters, subcutaneous adipose tissue samples were isolated and mRNA expression of cytokines, chemokines, chemokine receptors, pattern recognition receptors, and mediators involved in beiging of adipose tissue were measured. RESULTS: Adipose tissue IL-33 was inversely associated with HbA1c in individuals with normoglycemia and T2D but not in those with prediabetes and was inversely correlated with fasting plasma glucose in individuals with T2D and with a better glycemic control. IL-33-to-ST2 ratio was inversely correlated with HbA1c in individuals with normoglycemia but not in those with prediabetes or T2D. IL-33 was directly associated with ST2, CD302, fibrinogen-like protein 2 (FGL2), and PR domain containing 16 (PRDM16) but inversely correlated with chemokine (C-C motif) ligand (CCL) 7 and CCL8 in individuals with normoglycemia. Similarly, IL-33 was directly associated with ST2, CD302, FGL2, PRDM16, and, additionally, toll-like receptor (TLR) 3 and IL-12A in individuals with T2D. However, IL-33 was not associated with any of these mediators but was directly and strongly associated with TLR9 in individuals with prediabetes. CONCLUSIONS: IL-33 and/or IL-33/ST2 dynamics and biological functions may play a role in overall glycemia among humans and may represent a novel target by which glucose-lowering managements confer their beneficial effects.


Subject(s)
Adipose Tissue/metabolism , Hyperglycemia/metabolism , Interleukin-33/metabolism , Prediabetic State/metabolism , Adult , Aged , Biomarkers/blood , Biomarkers/metabolism , Female , Glycated Hemoglobin/analysis , Humans , Hyperglycemia/blood , Interleukin-33/genetics , Male , Middle Aged , Prediabetic State/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...