Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 31(2): 175-83, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20139900

ABSTRACT

AIM: To test the hypothesis that PI3K/Akt/eNOS signaling has a protective role in a murine model of ventilation associated lung injury (VALI) through down-regulation of p38 MAPK signaling. METHODS: Male C57BL/J6 (wild-type, WT) or eNOS knockout mice (eNOS(-/-)) were exposed to mechanical ventilation (MV) with low (LV(T), 7 mL/kg) and high tidal volume (HV(T), 20 mL/kg) for 0-4 h. A subset of WT mice was administered the specific inhibitors of PI3K (100 nmol/L Wortmannin [Wort], ip) or of p38 MAPK (SB203580, 2 mg/kg, ip) 1 h before MV. Cultured type II alveolar epithelial cells C10 were exposed to 18% cyclic stretch for 2 h with or without 20 nmol/L Wort pretreatment. At the end of the experiment, the capillary leakage in vivo was assessed by extravasation of Evans blue dye (EBD), wet/dry weight ratio and lung lavage protein concentration. The lung tissue and cell lysate were also collected for protein and histological review. RESULTS: MV decreased PI3K/Akt phosphorylation and eNOS expression but increased phospho-p38 MAPK expression along with a lung leakage of EBD. Inhibitions of phospho-Akt by Wort worsen the lung edema, whereas inhibition of p38 MAPK kinase restored activation of Akt together with alleviated capillary leakage. eNOS(-/-) mice showed an exacerbated lung edema and injury. The stretched C10 cells demonstrated that Wort diminished the activation of Akt, but potentiated phosphorylation of MAPK p38. CONCLUSION: Our results indicate that PI-3K/Akt/eNOS pathway has significant protective effects in VALI by preventing capillary leakage, and that there is a cross-talk between PI3K/Akt and p38 MAPK pathways in vascular barrier dysfunction resulting from VALI.


Subject(s)
Lung/drug effects , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Stress, Mechanical , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/pharmacology , Lung/enzymology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
2.
Am J Physiol Lung Cell Mol Physiol ; 291(3): L345-53, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16632522

ABSTRACT

Xanthine oxidoreductase (XOR) plays a prominent role in acute lung injury because of its ability to generate reactive oxygen species. We investigated the role of XOR in ventilator-induced lung injury (VILI). Male C57BL/6J mice were assigned to spontaneous ventilation (sham) or mechanical ventilation (MV) with low (7 ml/kg) and high tidal volume (20 ml/kg) for 2 h after which lung XOR activity and expression were measured and the effect of the specific XOR inhibitor allopurinol on pulmonary vascular leakage was examined. In separate experiments, rat pulmonary microvascular endothelial cells (RPMECs) were exposed to cyclic stretch (5% and 18% elongation, 20 cycles/min) for 2 h before intracellular XOR activity measurement. Lung XOR activity was significantly increased at 2 h of MV without changes in XOR expression. There was evidence of p38 MAP kinase, ERK1/2, and ERK5 phosphorylation, but no change in JNK phosphorylation. Evans blue dye extravasation and bronchoalveolar lavage protein concentration were significantly increased in response to MV, changes that were significantly attenuated by pretreatment with allopurinol. Cyclic stretch of RPMECs also caused MAP kinase phosphorylation and a 1.7-fold increase in XOR activity, which was completely abrogated by pretreatment of the cells with specific MAP kinase inhibitors. We conclude that XOR enzymatic activity is significantly increased by mechanical stress via activation of p38 MAP kinase and ERK and plays a critical role in the pathogenesis of pulmonary edema associated with VILI.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Lung Diseases/enzymology , MAP Kinase Signaling System , Respiratory Distress Syndrome/enzymology , Stress, Mechanical , Xanthine Oxidase/metabolism , Animals , Capillary Permeability , Endothelium, Vascular/metabolism , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Lung/metabolism , Lung Diseases/etiology , Lung Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Pulmonary Circulation/physiology , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/metabolism , Transcription, Genetic , Ventilators, Mechanical , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
3.
Am J Respir Crit Care Med ; 172(4): 470-9, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-15937288

ABSTRACT

RATIONALE: Inducible nitric oxide synthase (iNOS) has been implicated in the development of acute lung injury. Recent studies indicate a role for mechanical stress in iNOS and endothelial NOS (eNOS) regulation. OBJECTIVES: This study investigated changes in lung NOS expression and activity in a mouse model of ventilator-induced lung injury. METHODS: C57BL/6J (wild-type [WT]) and iNOS-deficient (iNOS(-/-)) mice received spontaneous ventilation (control) or mechanical ventilation (MV; VT of 7 and 20 ml/kg) for 2 hours, after which NOS gene expression and activity were determined and pulmonary capillary leakage assessed by the Evans blue albumin assay. RESULTS: iNOS mRNA and protein expression was absent in iNOS(-/-) mice, minimal in WT control mice, but significantly upregulated in response to 2 hours of MV. In contrast, eNOS protein was decreased in WT mice, and nonsignificantly increased in iNOS(-/-) mice, as compared with control animals. iNOS and eNOS activities followed similar patterns in WT and iNOS(-/-) mice. MV caused acute lung injury as suggested by cell infiltration and nitrotyrosine accumulation in the lung, and a significant increase in bronchoalveolar lavage cell count in WT mice, findings that were reduced in iNOS(-/-) mice. Finally, Evans blue albumin accumulation in lungs of WT mice was significant (50 vs. 15% increase in iNOS(-/-) mice compared with control animals) in response to MV and was prevented by treatment of the animals with the iNOS inhibitor aminoguanidine. CONCLUSION: Taken together, our results indicate that iNOS gene expression and activity are significantly upregulated and contribute to lung edema in ventilator-induced lung injury.


Subject(s)
Lung/enzymology , Nitric Oxide Synthase/pharmacology , Respiratory Distress Syndrome/etiology , Ventilators, Mechanical/adverse effects , Animals , Capillary Permeability , Gene Expression , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type II , Pulmonary Edema/etiology , Respiratory Distress Syndrome/enzymology , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...