Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 18(3)2018 Feb 26.
Article in English | MEDLINE | ID: mdl-29495411

ABSTRACT

Vital detection on the basis of Doppler radars has drawn a great deal of attention from researchers because of its high potential for applications in biomedicine, surveillance, and finding people alive under debris during natural hazards. In this research, the signal-to-noise ratio (SNR) of the remote vital-sign detection system is investigated. On the basis of different types of noise, such as phase noise, Gaussian noise, leakage noise between the transmitting and receiving antennae, and so on, the SNR of the system has first been examined. Then the research has focused on the investigation of the detection and false alarm probabilities of the system when the transmission link between the human and the radar sensor system took the Nakagami-m channel model. The analytical model for the false alarm and the detection probabilities of the system have been derived. The proposed theoretical models for the SNR and detection probability match with the simulation and measurement results. These theoretical models have the potential to be used as good references for the hardware development of the vital-sign detection radar sensor system.


Subject(s)
Radar , Humans , Models, Theoretical , Noise , Probability , Signal-To-Noise Ratio
2.
Artif Life ; 24(4): 250-276, 2018.
Article in English | MEDLINE | ID: mdl-30681914

ABSTRACT

Digital evolution is a computer-based instantiation of Darwinian evolution in which short self-replicating computer programs compete, mutate, and evolve. It is an excellent platform for addressing topics in long-term evolution and paleobiology, such as mass extinction and recovery, with experimental evolutionary approaches. We evolved model communities with ecological interdependence among community members, which were subjected to two principal types of mass extinction: a pulse extinction that killed randomly, and a selective press extinction involving an alteration of the abiotic environment to which the communities had to adapt. These treatments were applied at two different strengths, along with unperturbed control experiments. We examined how stability in the digital communities was affected from the perspectives of division of labor, relative shift in rank abundance, and genealogical connectedness of the community's component ecotypes. Mass extinction that was due to a Strong Press treatment was most effective in producing reshaped communities that differed from the pre-treatment ones in all of the measured perspectives; weaker versions of the treatments did not generally produce significant departures from a Control treatment; and results for the Strong Pulse treatment generally fell between those extremes. The Strong Pulse treatment differed from others in that it produced a slight but detectable shift towards more generalized communities. Compared to Press treatments, Pulse treatments also showed a greater contribution from re-evolved ecological doppelgangers rather than new ecotypes. However, relatively few Control communities showed stability in any of these metrics over the whole course of the experiment, and most did not represent stable states (by some measure of stability) that were disrupted by the extinction treatments. Our results have interesting, broad qualitative parallels with findings from the paleontological record, and show the potential of digital evolution studies to illuminate many aspects of mass extinction and recovery by addressing them in a truly experimental manner.


Subject(s)
Biota , Computer Simulation , Extinction, Biological , Biological Evolution , Models, Biological , Paleontology
SELECTION OF CITATIONS
SEARCH DETAIL
...