Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 18748, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36335113

ABSTRACT

Distributed lags play important roles in explaining the short-run dynamic and long-run cumulative effects of features on a response variable. Unlike the usual lag length selection, important lags with significant weights are selected in a distributed lag model (DLM). Inspired by the importance of distributed lags, this research focuses on the construction of distributed lag inspired machine learning (DLIML) for predicting vaccine-induced changes in COVID-19 hospitalization and intensive care unit (ICU) admission rates. Importance of a lagged feature in DLM is examined by hypothesis testing and a subset of important features are selected by evaluating an information criterion. Akin to the DLM, we demonstrate the selection of distributed lags in machine learning by evaluating importance scores and objective functions. Finally, we apply the DLIML with supervised learning for forecasting daily changes in COVID-19 hospitalization and ICU admission rates in United Kingdom (UK) and United States of America (USA). A sharp decline in hospitalization and ICU admission rates are observed when around 40% people are vaccinated. For one percent more vaccination, daily changes in hospitalization and ICU admission rates are expected to reduce by 4.05 and 0.74 per million after 14 days in UK, and 5.98 and 1.04 per million after 20 days in USA, respectively. Long-run cumulative effects in the DLM demonstrate that the daily changes in hospitalization and ICU admission rates are expected to jitter around the zero line in a long-run. Application of the DLIML selects fewer lagged features but provides qualitatively better forecasting outcome for data-driven healthcare service planning.


Subject(s)
COVID-19 , Vaccines , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Intensive Care Units , Hospitalization , Machine Learning
2.
Cognit Comput ; 13(3): 761-770, 2021.
Article in English | MEDLINE | ID: mdl-33868501

ABSTRACT

The dangerously contagious virus named "COVID-19" has struck the world strong and has locked down billions of people in their homes to stop the further spread. All the researchers and scientists in various fields are continually developing a vaccine and prevention methods to aid the world from this challenging situation. However, a reliable prediction of the epidemic may help control this contiguous disease until the cure is available. The machine learning techniques are one of the frontiers in predicting this outbreak's future trend and behavior. Our research is focused on finding a suitable machine learning algorithm that can predict the COVID-19 daily new cases with higher accuracy. This research has used the adaptive neuro-fuzzy inference system (ANFIS) and the long short-term memory (LSTM) to foresee the newly infected cases in Bangladesh. We have compared both the experiments' results, and it can be forenamed that LSTM has shown more satisfactory results. Upon study and testing on several models, we have shown that LSTM works better on a scenario-based model for Bangladesh with mean absolute percentage error (MAPE)-4.51, root-mean-square error (RMSE)-6.55, and correlation coefficient-0.75. This study is expected to shed light on COVID-19 prediction models for researchers working with machine learning techniques and avoid proven failures, especially for small imprecise datasets.

3.
Cognit Comput ; : 1-14, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33619436

ABSTRACT

Around the world, scientists are racing hard to understand how the COVID-19 epidemic is spreading and growing, thus trying to find ways to prevent it before medications are available. Many different models have been proposed so far correlating different factors. Some of them are too localized to indicate a general trend of the pandemic while some others have established transient correlations only. Hence, in this study, taking Bangladesh as a case, a 4P model has been proposed based on four probabilities (4P) which have been found to be true for all affected countries. Efficiency scores have been estimated from survey analysis not only for governing authorities on managing the situation (P(G)) but also for the compliance of the citizens ((P(P)). Since immune responses to a specific pathogen can vary from person to person, the probability of a person getting infected ((P(I)) after being exposed has also been estimated. And the vital one is the probability of test positivity ((P(T)) which is a strong indicator of how effectively the infected people are diagnosed and isolated from the rest of the group that affects the rate of growth. All the four parameters have been fitted in a non-linear exponential model that partly updates itself periodically with everyday facts. Along with the model, all the four probabilistic parameters are engaged to train a recurrent neural network using long short-term memory neural network and the followed trial confirmed a ruling functionality of the 4Ps.

SELECTION OF CITATIONS
SEARCH DETAIL
...