Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 32(33)2021 May 28.
Article in English | MEDLINE | ID: mdl-33662937

ABSTRACT

Junctionless tunneling field-effect transistor (JL-TFET) is an excellent potential alternative to conventional MOSFET and TFET due to the lack of a steep doping profile, which makes it easier to fabricate. JL-TFET not only offers a lower subthreshold swing (SS) compared to MOSFET, but mitigates the low on-current problem associated with conventional TFET. The DC and analog characteristics of JL-TFET can be further improved by design modifications. In this research, we have presented two novel structures of JL-TFET: stimulated n-pocket JL-TFET (SNPJL-TFET) and SNPJL-TFET with heterogeneous gate dielectric. The performance of these devices has been gauged against conventional JL-TFET. Both novel structures exhibit excellent performance including point SS around 20 mV/dec, highION/IOFFin the order of 1014and lower threshold voltage (VT). By analyzing RF and linearity parameters such as the transconductance generation factor,FT, transit time, total factor productivity, second-order voltage intercept point, third-order voltage intercept point, third-order input intercept point and third-order intermodulation distortion, it is observed that the proposed devices are more suitable for RF applications since they show superiority in most of the analyzed parameters.

2.
Anal Chem ; 89(18): 9649-9653, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28819972

ABSTRACT

Organohalide lead (hybrid) perovskites have emerged as competitive semiconducting materials for photovoltaic devices due to their high performance and low cost. To further the understanding and optimization of these materials, solution-based methods for interrogating and modifying perovskite thin films are needed. In this work, we report a hydrofluoroether (HFE) solvent-based electrolyte for electrochemical processing and characterization of organic-inorganic trihalide lead perovskite thin films. Organic perovskite films are soluble in most of the polar organic solvents, and thus until now, they were not considered suitable for electrochemical processing. We have enabled electrochemical characterization and demonstrated a processing toolset for these materials utilizing highly fluorinated electrolytes based on a HFE solvent. Our results show that chemically orthogonal electrolytes based on HFE solvents do not dissolve organic perovskite films and thus allow electrochemical characterization of the electronic structure, investigation of charge transport properties, and potential electrochemical doping of the films with in situ diagnostic capabilities.

3.
Springerplus ; 2(1): 151, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23667808

ABSTRACT

Electronic and optical properties of Silicon Nanowire (SiNW) obtained from theoretical studies and experimental approaches have been reviewed. The diameter dependency of bandgap and effective mass of SiNW for various terminations have been presented. Optical absorption of SiNW and nanocone has been compared for different angle of incidences. SiNW shows greater absorption with large range of wavelength and higher range of angle of incidence. Reflectance of SiNW is less than 5% over majority of the spectrum from the UV to near IR region. Thereafter, a brief description of the different growth techniques of SiNW is given. The advantages and disadvantages of the different catalyst materials for SiNW growth are discussed at length. Furthermore, three thermodynamic aspects of SiNW growth via the vapor-liquid-solid mechanism are presented and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...