Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Intell Neurosci ; 2022: 7075408, 2022.
Article in English | MEDLINE | ID: mdl-36072731

ABSTRACT

The use of an automatic histopathological image identification system is essential for expediting diagnoses and lowering mistake rates. Although it is of enormous clinical importance, computerized breast cancer multiclassification using histological pictures has rarely been investigated. A deep learning-based classification strategy is suggested to solve the challenge of automated categorization of breast cancer pathology pictures. The attention model that acts on the feature channel is the channel refinement model. The learned channel weight may be used to reduce superfluous features when implementing the feature channel. To increase classification accuracy, calibration is necessary. To increase the accuracy of channel recalibration findings, a multiscale channel recalibration model is provided, and the msSE-ResNet convolutional neural network is built. The multiscale properties flow through the network's highest pooling layer. The channel weights obtained at different scales are delivered into line fusion and used as input to the next channel recalibration model, which may improve the results of channel recalibration. The experimental findings reveal that the spatial recalibration model fares poorly on the job of classifying breast cancer pathology pictures when applied to the semantic segmentation of brain MRI images. The public BreakHis dataset is used to conduct the experiment. The network performs benign/malignant breast pathology picture classification collected at various magnifications with a classification accuracy of 88.87 percent, according to experimental data. The diseased images are also more resilient. Experiments on pathological pictures at various magnifications show that msSE-ResNet34 is capable of performing well when used to classify pathological images at various magnifications.


Subject(s)
Breast Neoplasms , Carcinoma , Breast Neoplasms/diagnostic imaging , Calibration , Female , Humans , Keratoacanthoma , Neural Networks, Computer
2.
Biomed Res Int ; 2022: 1859222, 2022.
Article in English | MEDLINE | ID: mdl-35924264

ABSTRACT

The diagnosis and treatment of patients in the healthcare industry are greatly aided by data analytics. Massive amounts of data should be handled using machine learning approaches to provide tools for prediction and categorization to support practitioner decision-making. Based on the kind of tumor, disorders like breast cancer can be categorized. The difficulties associated with evaluating vast amounts of data should be overcome by discovering an efficient method for categorization. Based on the Bayesian method, we analyzed the influence of clinic pathological indicators on the prognosis and survival rate of breast cancer patients and compared the local resection value directly using the lymph node ratio (LNR) and the overall value using the LNR differences in effect between estimates. Logistic regression was used to estimate the overall LNR of patients. After that, a probabilistic Bayesian classifier-based dynamic regression model for prognosis analysis is built to capture the dynamic effect of multiple clinic pathological markers on patient prognosis. The dynamic regression model employing the total estimated value of LNR had the best fitting impact on the data, according to the simulation findings. In comparison to other models, this model has the greatest overall survival forecast accuracy. These prognostic techniques shed light on the nodal survival and status particular to the patient. Additionally, the framework is flexible and may be used with various cancer types and datasets.


Subject(s)
Breast Neoplasms , Bayes Theorem , Breast Neoplasms/pathology , Female , Humans , Lymph Node Excision , Lymph Nodes/pathology , Lymphatic Metastasis/pathology , Neoplasm Staging , Prognosis , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...