Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1239008, 2023.
Article in English | MEDLINE | ID: mdl-38078071

ABSTRACT

The duration and intensity of freezing stress are the most critical factors determining injury in autumn chickpeas, limiting their production and development. To evaluate the effects of freezing temperature and duration on the survival rate (SU%), as well as the physiological and biochemical characteristics of autumn chickpea seedlings, a study was conducted using five different temperatures (0, -6, -8, -10, and -12°C) and five different durations (1 h, 2 h, 3 h, 4 h, and 5 h) of exposure to freezing stress. The SU% of chickpea seedlings decreased to zero after exposure to temperatures of -10°C and -12°C for 5 hours. As the temperature decreased from -8°C to -12°C and the duration of exposure to freezing stress increased from 1 to 5 hours, the leaf membrane stability index decreased by 33%, 48%, 46%, 57%, and 58%, respectively. The highest and lowest total pigment contents were observed after 1 hour at 0°C and 5 hours at -12°C, respectively. The maximum photochemical efficiency of photosystem II (Fv'/Fm') was not affected by temperatures as low as -8°C in any of the time treatments during the recovery period. However, this parameter's value decreased as the freezing stress duration increased. At -12°C, the activity of ascorbate peroxidase, catalase, and peroxidase increased by 44.6%, 38.3%, and 33.0%, respectively, as the duration of stress was increased from 1 hour to 5 hours. A positive and significant correlation was observed between plant dry weight, membrane stability index, photosynthetic pigment content, and Fv'/Fm' with SU% after exposure to freezing stress. The minimum temperature and the maximum duration of freezing stress tolerance in chickpea seedlings were observed at -12°C for two hours. Our findings confirm that prolonging the freezing duration disrupts the defense mechanisms of chickpea seedlings. Therefore, future studies on breeding chickpeas tolerant to freezing stress should concentrate on attributes strongly correlated with SU%.

2.
Sci Rep ; 13(1): 16176, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37759070

ABSTRACT

Plant growth-promoting bacteria (PGPBs) play a crucial role in mitigating the oxidative damage caused by water stress in different plant species. The aim of this study was to determine the effects of PGPBs and mycorrhiza-like fungi (Piriformospora indica) on improving drought tolerance in moldavian balm (Dracocephalum moldavica L.), a medicinal and aromatic plant. For this purpose, a greenhouse study was conducted in a factorial experiment based on a randomized complete design with three replications. Results indicate that water stress reduces the membrane stability index (MSI), total chlorophyll content (Chlt), carotenoids, and maximum photochemical efficiency of photosystem II (Fv'/Fm') in moldavian balm plants, while increasing superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and hydrogen peroxide (H2O2) content compared to the control (no water stress). Inoculation with PGPBs and Piriformospora indica helped alleviate the negative effects of water stress. The highest MSI (48%) and Fv'/Fm' value (0.82) were observed when inoculated with Enterobacter and Piriformospora, respectively, under non-water-stressed conditions. Inoculation with Agrobacterium, Piriformospora, and Enterobacter improved the Chlt and leaf proline contents, as well as the SOD activity under high water stress, compared to the non-inoculated control values. Furthermore, inoculation with Pseudomonas under high water deficit stress levels increased the MDA content (0.51 mmol g-1 FW) and H2O2 levels (0.40 mmol g-1 FW). The highest yield of flowering branches (2.414 g pot-1) in moldavian balm was obtained with Enterobacter. Based on the enhanced physiological and biochemical responses, as well as increased antioxidant enzyme activity that improve water tolerance in this plant, it is recommended to use PGPBs and Piriformospora indica fertilization.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Mycorrhizae , Dehydration , Hydrogen Peroxide , Antioxidants , Enterobacter , Superoxide Dismutase
3.
PLoS One ; 17(10): e0274945, 2022.
Article in English | MEDLINE | ID: mdl-36201477

ABSTRACT

The occurrence of freezing stress around herbicides application is one of the most important factors influencing their performance. This experiment was performed to evaluate the efficacy of clodinafop-propargyl and 2,4-D plus MCPA (2,4-Dichlorophenoxyacetic acid plus 2-methyl-4-chlorophenoxyacetic acid), the most important herbicides used in wheat fields in Iran, under the influence of a freezing treatment (-4°C). Wheat and its two common weeds, winter wild oat (Avena ludoviciana Durieu) and turnipweed [Rapistrum rugosum (L.) All.], were exposed to the freezing treatment for three nights from 7:00 P.M. to 5:00 A.M. before and after herbicide application, and their response was compared with plants that did not grow under freezing stress. Under no freezing (NF) and freezing after spray (FAS) conditions, winter wild oat was completely controlled with the recommended dose of clodinafop-propargyl (64 g ai ha-1; hereafter g ha-1). However, the survival percentage of winter wild oat in the freezing before spray (FBS) of clodinafop-propargyl 64 g ha-1 was 7%, and it was completely controlled with twice the recommended dose (128 g ha-1). Under NF conditions and FAS treatment, turnipweed was completely controlled with twice the recommended dose of 2,4-D plus MCPA (2025 g ae ha-1; hereafter g ha-1), while there was no complete control under recommended rate. However, in the FBS treatment, the survival of turnipweed was 7% under double dose. The LD50 (dose required to control 50% of individuals in the population) and GR50 (dose causing 50% growth reduction of plants) rankings were NF

Subject(s)
2-Methyl-4-chlorophenoxyacetic Acid , Brassicaceae , Herbicides , 2,4-Dichlorophenoxyacetic Acid/pharmacology , Avena , Herbicides/pharmacology , Humans , Plant Weeds , Propionates , Pyridines , Triticum
SELECTION OF CITATIONS
SEARCH DETAIL
...