Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
New Microbes New Infect ; 43: 100913, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34381617

ABSTRACT

Among different causes of inflammatory bowel disease (IBD), the imbalance of the gut microbiome (dysbiosis) is one of the main reasons for the development of the disease. Probiotics are live microorganisms that can maintain gut microbiota by different mechanisms. We aimed to isolate and characterize the potential probiotic strains of Lactobacillus from the Iranian population. This cross-sectional study was conducted on faecal samples of 83 volunteer individuals living in Guilan Province, North Iran. The primary identification of Lactobacillus strains was performed by standard microbiological tests and confirmed by amplification of 16s rRNA specific primers. The acid and bile salt tolerance were assessed for all recovered strains. Also, the presence of 3 bacteriocins encoding genes was investigated by the PCR method. Totally, 42 samples were positive for Lactobacillus species. Acid and bile resistance assay showed that 67% and 33% of strains were resistant to acid and bile salt stress, respectively. Therefore, we found out that 28% of our Lactobacillus strains have the ability for resistance to acid and bile conditions. PCR results revealed that the prevalence of gassericin A, plantaricin S, lactacin bacteriocin genes were 16.6%, 12%, and 9.5%, respectively. Meanwhile, 5 out of 12 Lactobacillus strains that were resistant to acid and bile conditions contained one of the gassericin or plantaricin bacteriocins. We isolated 42 potential probiotic strains of Lactobacillus, of which the results of 5 strains were more promising and can be considered as potential probiotics sources for future functional products.

2.
Microb Pathog ; 92: 54-59, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26747584

ABSTRACT

Enterococci are known as a cause of nosocomial infections and this aptitude is intensified by the growth of antibiotic resistance. In the present study, Enterococcus faecium isolates from healthy volunteers were considered to determine the antibiotic resistance profiles and genetic correlation. A total 91 normal flora isolates of enterococci were included in this study. Identification of Enterococcus genus and species were done by biochemical and PCR methods, respectively. Sensitivity for 10 antibiotics was determined and genetic relatedness of all isolates was assessed using Repetitive Element Palindromic PCR (REP-PCR) followed by Pulse Field Gel Electrophoresis (PFGE) on the representative patterns. None of the isolates were resistant to teicoplanin, vancomycin, quinupristin-dalfopristin, linezolid, chloramphenicol, ampicillin and high-level gentamicin. On the other hand, the resistance rate was detected in 30.7%, 23%, and 3.29% of isolates for erythromycin, tetracycline and ciprofloxacin, respectively. The results of PFGE showed 19 (61.5% of our isolates) common types (CT) and 35 (38.5%) single types (ST) amongst the isolates. This is the first study to describe antibiotic resistance pattern and genetic relationship among normal flora enterococci in Iran. This study showed no prevalence of Vancomycin Resistant Enterococci (VRE) and high degrees of diversity among normal flora isolates by genotyping using PFGE.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Enterococcus faecium/drug effects , Enterococcus faecium/genetics , Gram-Positive Bacterial Infections/microbiology , Enterococcus faecium/classification , Enterococcus faecium/isolation & purification , Genes, Bacterial , Healthy Volunteers , Humans , Microbial Sensitivity Tests , Molecular Typing
SELECTION OF CITATIONS
SEARCH DETAIL
...