Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Mater Chem B ; 12(16): 3807-3839, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38529820

ABSTRACT

This review article explores the innovative field of eco-friendly cyclodextrin-based coordination polymers and metal-organic frameworks (MOFs) for transdermal drug delivery in the case of skin cancer therapy. We critically examine the significant advancements in developing these nanocarriers, with a focus on their unique properties such as biocompatibility, targeted drug release, and enhanced skin permeability. These attributes are instrumental in addressing the limitations inherent in traditional skin cancer treatments and represent a paradigm shift towards more effective and patient-friendly therapeutic approaches. Furthermore, we discuss the challenges faced in optimizing the synthesis process for large-scale production while ensuring environmental sustainability. The review also emphasizes the immense potential for clinical applications of these nanocarriers in skin cancer therapy, highlighting their role in facilitating targeted, controlled drug release which minimizes systemic side effects. Future clinical applications could see these nanocarriers being customized to individual patient profiles, potentially revolutionizing personalized medicine in oncology. With further research and clinical trials, these nanocarriers hold the promise of transforming the landscape of skin cancer treatment. With this study, we aim to provide a comprehensive overview of the current state of research in this field and outline future directions for advancing the development and clinical application of these innovative nanocarriers.


Subject(s)
Administration, Cutaneous , Antineoplastic Agents , Cyclodextrins , Metal-Organic Frameworks , Skin Neoplasms , Metal-Organic Frameworks/chemistry , Humans , Cyclodextrins/chemistry , Skin Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Drug Delivery Systems , Animals , Drug Carriers/chemistry
2.
Int J Biol Macromol ; 263(Pt 2): 130295, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382787

ABSTRACT

In this study, a simple novel hybrid mesoporous nanomaterial derived from a metal-organic framework (ZIF-8) and chitosan, which were coated on green bismuth oxide, has been successfully synthesized, characterized, and applied to investigate its dapsone loading-releasing capability in the aqueous media. This suggested nanocomposite showed promise for drug loading from water b using hydrogen bonds, pi-pi, and electrostatic interactions. Structural and morphological analyses were performed on the proposed green synthesized nanocomposite through scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller analysis, and thermogravimetric analysis. Various influencing parameters, including pH, nanocomposite dose, and contact time, were investigated to optimize the dapsone loading process. Utilizing the non-linear optimization methodology, the results show that dapsone-loading efficiency was >85 % for 50 mg.L-1 of dapsone drug. The optimum parameters for achieving maximal loading of dapsone drug were pH = 6.8, hybrid mesosphere dose = 2.6 mg.mL-1, and time = 53 min. Based on the release investigations, the dapsone-loaded nanocomposite was put into phosphate buffer saline, at pH = 7.4 and T = 37 °C, with a maximum efficiency of 93.9 after 24 h.


Subject(s)
Chitosan , Nanocomposites , Chitosan/chemistry , Water/chemistry , Dapsone , Microscopy, Electron, Scanning , Nanocomposites/chemistry , Spectroscopy, Fourier Transform Infrared
3.
Environ Sci Pollut Res Int ; 30(15): 43714-43725, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36662432

ABSTRACT

Herein, a highly porous bimetal-organic framework (bi-MOF) based on cobalt and nickel was successfully in situ grown on organoclay (OC) clusters by solvothermal method. Accordingly, the hierarchical porous CoNi-MOF/OC composite with a superior specific surface area of 2046 m2/g and a large pore volume of 0.763 cm3/g was obtained, which facilitated the adsorption of organic dyes. A morphological study using scanning electron microscopy indicated the formation of uniform bi-MOF crystals on the OC plates. Furthermore, the single- and multi-dye adsorption assays were implemented to precisely evaluate the adsorption capacity and selectivity of CoNi-MOF/OC composite to anionic and cationic dyes. The results revealed a high adsorption capacity of 58.61 mg/g at an adsorbent content of 15 mg, initial dye concentration of 20 ppm, and contact time of 25 min for MB, which is superior to several existing clay-based adsorbents. The adsorption kinetics study showed that the adsorption of cationic and anionic dyes onto the CoNi-MOF/OC composite followed the pseudo-second-order kinetic model. Interestingly, the regeneration study showed appropriate reusability and stability of the CoNi-MOF/OC composite for the removal of organic dyes with an almost unchanged structure after four regeneration cycles. The results of this study provide new insights for the rational design and fabrication of next-generation clay-based adsorbent by combining the synergistic advantages of bi-MOF with superior specific surface area and pore volume with organoclay composition and structure.


Subject(s)
Conus Snail , Water Pollutants, Chemical , Animals , Clay , Adsorption , Porosity , Water Pollutants, Chemical/analysis , Coloring Agents/chemistry
4.
ACS Appl Mater Interfaces ; 14(39): 44488-44497, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36153953

ABSTRACT

Metal-organic frameworks (MOFs) are well-known porous crystalline materials that have been used for the removal of organic pollutants from wastewater. To enhance the adsorption performance of these adsorbents and facilitate their recycling process, we propose a hybrid composite of an MXene/metal-organic framework (MXOF) decorated on a hierarchical and self-supported porous three-dimensional (3D) printed lattice structure (3D-MXOF). In this design, the porous MXOF composite extremely enhanced the specific surface area and synergistically promoted the dye removal efficiency of 3D-printed lattices. Scanning electron microscopy images indicated that the MXOF composite was uniformly decorated on a 3D-printed lattice structure without agglomeration. The resultant supported 3D-MXOF structures were evaluated for the adsorption of anionic dyes. The results revealed high adsorption performance (91.98% for methyl orange and 84.9% for direct red 31 dyes) and fast adsorption kinetics following a pseudo-first-order kinetic model. Moreover, the 3D-MXOF structure possesses a facile recycling process with sustainable adsorption performance after four consecutive adsorption-desorption cycles.

5.
Int J Biol Macromol ; 208: 409-420, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35339500

ABSTRACT

Here, we developed chitosan (CS)-based nanofibrous scaffold consisting of tannic acid (TA) and zinc-based metal-organic framework (MOF) as a novel antibacterial and hemostatic wound dressing. The effect of MOF content and its incorporation within and onto CS/PVA-TA nanofibrous scaffolds were studied. The morphological characterization of fabricated nanofibrous scaffolds revealed the formation of uniform and bead-free nanofibers with an average diameter between 120 and 150 nm. The uniform and continuous decoration of MOF crystals on nanofibrous scaffold surfaces were confirmed by FESEM. The developed nanofibrous scaffolds exhibit appropriate physicochemical characteristics such as chemical and crystalline structure, surface wettability and swelling, and mechanical properties. It is shown that the incorporation of TA and MOFs greatly enhanced the hemostatic performance of the CS/PVA nanofibrous scaffold by providing rapid liquid absorbability and accelerating the aggregation of coagulation factors and platelets. Furthermore, the results of the MTT assay suggested the good biocompatibility of nanofibrous scaffolds containing MOF nanoparticles. The nanofibrous scaffolds exhibited excellent antibacterial activity against Escherichia coli and Staphylococcus aureus. The disk diffusion antibacterial assay showed that the nanofibrous scaffolds containing TA and MOF could protect wound from bacterial infection. The findings provide new insights to develop a MOF-modified nanofibrous structure with great potential for hemostatic wound dressing application.


Subject(s)
Chitosan , Hemostatics , Metal-Organic Frameworks , Nanofibers , Anti-Bacterial Agents/chemistry , Bandages , Chitosan/chemistry , Escherichia coli , Hemostatics/pharmacology , Metal-Organic Frameworks/pharmacology , Nanofibers/chemistry , Tannins/pharmacology
6.
J Drug Target ; 30(4): 381-393, 2022 04.
Article in English | MEDLINE | ID: mdl-34847807

ABSTRACT

The relatively new class of porous material known as metal-organic framework (MOF) exhibits unique features such as high specific surface area, controlled porosity and high chemical stability. Many green synthesis approaches for MOFs have been proposed using biocompatible metal ions and linkers to maximise their use in pharmaceutical fields. The involvement of biomolecules as an organic ligand can act promising because of their biocompatibility. Recently, cyclodextrin metal-organic frameworks (CD-MOFs) represent environmentally friendly and biocompatible characteristics that lead them to biomedical applications. They are regarded as a promising nanocarrier for drug delivery, due to their high specific surface area, high porosity, tuneable chemical structure, and easy fabrication. This review focuses on the unique properties of CD-MOF and the recent advances in methods for the synthesis of these porous structures with emphasis on particle size. Then, the state-of-the-art drug delivery systems with various drugs along with the performance of CD-MOFs as efficient drug delivery systems are presented. Particular emphasis is laid on researches investigating the drug delivery potential of γ-CD-MOF.


Subject(s)
Cyclodextrins , Metal-Organic Frameworks , gamma-Cyclodextrins , Cyclodextrins/chemistry , Drug Delivery Systems/methods , Metal-Organic Frameworks/chemistry , Pharmaceutical Preparations , Porosity , gamma-Cyclodextrins/chemistry
7.
Environ Sci Pollut Res Int ; 28(44): 62474-62486, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34195949

ABSTRACT

In this study, a magnetic metal-organic framework (MMOF) was synthesized and post-modified with poly(propyleneimine) dendrimer to fabricate a novel functional porous nanocomposite for adsorption and recovery of palladium (Pd(II)) from aqueous solution. The morphological and structural characteristics of the prepared material were identified by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmet-Teller (BET) isotherm, and vibrating sample magnetometer (VSM). The results confirmed the successful synthesis and post-modification of MMOF. Semispherical shape particles (20-50 nm) with appropriate magnetic properties and a high specific surface area of 120 m2/g were obtained. An experimental design approach was performed to show the effect of adsorption conditions on Pd(II) uptake efficiency of the dendrimer-modified magnetic adsorbent. The study showed that the Pd(II) uptake on dendrimer-modified MMOF was well described by the Langmuir isotherm model with the highest uptake capacity of 291 mg/g under optimal condition (adsorbent content of 12.5 mg, Pd ion concentration of 80 ppm, pH = 4, and contact time of 40 min). The adsorption kinetics of Pd(II) ions was suggested to be a pseudo-first-order model. The results revealed a faster adsorption rate and higher adsorption capacity (about 43%) for dendrimer-modified MMOF. Finally, the reusability of the provided adsorbent was evaluated. This work provides a valuable strategy for designing and developing efficient magnetic adsorbents based on MOFs for the adsorption and recovery of precious metals.


Subject(s)
Dendrimers , Metal-Organic Frameworks , Nanocomposites , Water Pollutants, Chemical , Adsorption , Kinetics , Magnetic Phenomena , Palladium , Polypropylenes , Research Design , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
8.
Environ Sci Pollut Res Int ; 27(28): 35515-35525, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32592064

ABSTRACT

This study focuses on the synthesis of carbon nanotubes decorated with nickel-zinc ferrites and fabrication of polyurethane (PU) nanofiber containing CNT-ferrite composites as highly efficient adsorbents for removal of hydrogen sulfide. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, and powder X-ray diffraction (PXRD) are used to perform microstructural and morphological characterization of the electrospun nanofibrous composites. To show the efficiency of the composite as an adsorbent, a breakthrough test is carried out. It is shown that the PU-CNT-ferrite composites are fabricated almost uniformly with an average fiber diameter of 320 nm and exhibit significant H2S breakthrough capacity (498 mgH2S/g) compared to both the pristine PU and PU-CNT nanofibers. These electrospun nanofibers based on CNT-ferrite composites, already studied for H2S adsorption with promising results, open up new and interesting perspective into the design and fabrication of highly efficient membrane for practical application in the processes of air purification.


Subject(s)
Hydrogen Sulfide , Nanofibers , Nanotubes, Carbon , Ferric Compounds , Nickel , Polyurethanes , Zinc Compounds
9.
ACS Appl Mater Interfaces ; 12(22): 25294-25303, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32400154

ABSTRACT

Herein, a magnetic zirconium-based metal-organic framework nanocomposite was synthesized by a simple solvothermal method and used as an adsorbent for the removal of direct and acid dyes from aqueous solution. To enhance its adsorption performance, poly(propyleneimine) dendrimer was used to functionalize the as-synthesized magnetic porous nanocomposite. The dendrimer-functionalized magnetic nanocomposite was characterized by field-emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption/desorption isotherms, and vibration sample magnetometer. The obtained results revealed the successful synthesis and functionalization of the magnetic nanocomposite. The adsorbents exhibited good magnetic properties with high saturation magnetization and high specific surface area. The adsorption isotherms and kinetics of anionic dyes were described by the Freundlich and pseudo-second-order models, respectively. It was found that the kinetics of adsorption of both the investigated dyes by the dendrimer-functionalized magnetic composite is considerably faster than the magnetic composite under the same condition. The adsorption capacity of the dendrimer-functionalized magnetic composite for investigated direct and acid dyes was 173.7 and 122.5 mg/g, respectively, which was higher than those of the existing magnetic adsorbents. This work provides new insights into the synthesis and application of hybrid magnetic adsorbents with synergistic properties of nanoporous metal-organic frameworks and dendrimer with a large number of functional groups for the removal of organic dyes.

10.
Chem Commun (Camb) ; 56(21): 3135-3138, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32057050

ABSTRACT

We present enhanced electrocatalytic activity of three-dimensional graphene scaffolds by decoration with one-dimensional CoxNi1-x MOF nanostructures (0 ≤x≤ 1). The decreased overpotential and fast kinetics of the oxygen evolution reaction as compared with the existing materials are shown. The developed bimetallic MOF/3DG composites have great potential to be used in electrocatalytic water oxidation.

11.
J Air Waste Manag Assoc ; 66(9): 912-21, 2016 09.
Article in English | MEDLINE | ID: mdl-27192035

ABSTRACT

UNLABELLED: The present study aimed to optimize the electrospinning parameters for polyacrylonitrile (PAN) nanofibers containing MgO nanoparticle to obtain the appropriate fiber diameter and mat porosity to be applied in air filtration. Optimization of applied voltage, solution concentration, and spinning distance was performed using response surface methodology. In total, 15 trials were done according to the prepared study design. Fiber diameter and porosity were measured using scanning electron microscopic (SEM) image analysis. For air filtration testing, the nanofiber mat was produced based on the suggested optimum conditions for electrospinning. According to the results, the lower solution concentration favored the thinner fiber. The larger diameter gave a higher porosity. At a given spinning distance, there was a negative correlation between fiber diameter and applied voltage. Moreover, there were curvilinear relationships between porosity and both spinning distance and applied voltage at any concentration. It was also concluded that the developed filter medium could be comparable to the high-efficiency particulate air (HEPA) filter in terms of collection efficiency and pressure drop. The empirical models presented in this study can provide an orientation to the subsequent experiments to form uniform and continuous nanofibers for future application in air purification. IMPLICATIONS: High-efficiency filtration is becoming more important, due to decreasing trends air quality. Effective filter media are increasingly needed in industries applying clean-air technologies, and the necessity for developing the high-performance air filters has been more and more felt. Nanofibrous filter media that are mostly fabricated via electrospinning technique have attracted considerable attention in the last decade. The present study aimed to develop the electrospun PAN-containing MgO nanoparticle (using the special functionalities such as absorption and adsorption characteristics, antibacterial functionality, and as a pore-forming agent) filter medium through experimental investigations for application in high-performance air filters.


Subject(s)
Acrylic Resins/chemistry , Air Filters , Magnesium Oxide/chemistry , Nanofibers/chemistry , Microscopy, Electrochemical, Scanning , Porosity
12.
J Sep Sci ; 39(2): 256-63, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26519201

ABSTRACT

In this paper, carbon-coated Fe3 O4 nanoparticles were successfully synthesized and used as a magnetic solid-phase extraction absorbent for the preconcentration and extraction of organophosphorus pesticides in environmental water samples. The carbon-coated Fe3 O4 nanoparticles were characterized by transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The determination of organophosphorus pesticides in water samples with carbon-coated Fe3 O4 nanoparticles was investigated by high-performance liquid chromatography with a diode array detector. Furthermore, the response surface model based on the central composite design was applied to quantitatively investigate the effect of some important variables influencing the extraction efficiency, such as pH, treatment time, amount of nanoparticle sorbents, and amount of salt and to find the optimized conditions providing the highest extraction efficiency. Under optimized conditions, the calibration curve was linear in the range of 0.5-15.0 ng/mL with a regression coefficient of 0.9948, 0.9958, and 0.9931 for fenitrothion, diazinon, and ethion, respectively. The obtained results showed that this analytical method would be useful for the analysis of fenitrothion, diazinon, and ethion in tap water with high precision and accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...