Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 18(4): 967-78, 1999 Jan 28.
Article in English | MEDLINE | ID: mdl-10023672

ABSTRACT

Tumor necrosis factor (TNF)-induced apoptosis can be inhibited by overexpression of specific tyrosine kinases or activation of tyrosine kinase cascades, suggesting potential antagonism between apoptotic and tyrosine kinase signaling processes. In this report, the effects of TNF on EGF receptor tyrosine phosphorylation in ME-180 cell variants selected for apoptotic sensitivity (Sen) or resistance (Res) to TNF, previously shown to differentially express EGFr, were examined. Prior to the onset of apoptosis, TNF caused a significant reduction in the level of EGFr tyrosine phosphorylation in Sen cells but mediated only limited suppression of EGFr tyrosine phosphorylation in apoptotically resistant Res cells. In vitro incubation of cellular membranes with TNF derived from Sen cells stimulated a resident protein tyrosine phosphatase (PTP) activity which was able to dephosphorylate EGFr or tyrosine phosphopeptides mimicking an EGFr autophosphorylation site. In membrane preparations, PTPIB complexed with tyrosine phosphorylated EGFr and this association was disrupted by TNF through an apparent stimulation of PTP activity and turnover of phosphotyrosine. Intrinsic enzymatic activity of PTP1B was 2-3-fold higher in Sen versus Res cell lysates and a family of PTP1B-related proteins with altered C-termini was found to be highly expressed in Sen cells but absent or expressed at reduced levels in Res cells. Cytoplasmic extracts of Sen cells contained PTP1B-like proteins and TNF incubation resulted in the time dependent accumulation of PTP1B-like proteins in Sen cells but did not effect these proteins in Res cells. Together, these results suggest that specific changes in expression and subcellular distribution of phosphotyrosine modulatory proteins may play a role in conveying intrinsic apoptotic sensitivity to TNF in some tumor cell types.


Subject(s)
Apoptosis , ErbB Receptors/drug effects , Protein Tyrosine Phosphatases/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Enzyme Inhibitors/pharmacology , ErbB Receptors/metabolism , NF-kappa B/metabolism , Phosphorylation/drug effects , Protein Tyrosine Phosphatases/antagonists & inhibitors , Signal Transduction , Tumor Cells, Cultured/drug effects , Vanadates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...