Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropeptides ; 47(1): 43-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22981157

ABSTRACT

A major consequence of Parkinson's disease (PD) involves the loss of dopaminergic neurons in the substantia nigra (SN) and a subsequent loss of dopamine (DA) in the striatum. We have shown that glial cell line-derived neurotrophic factor (GDNF) shows robust restorative and protective effects for DA neurons in rats, non-human primates and possibly in humans. Despite GDNF's therapeutic potential, its clinical value has been questioned due to its limited diffusion to target areas from its large size and chemical structure. Several comparatively smaller peptides are thought to be generated from the prosequence. A five amino-acid peptide, dopamine neuron stimulating peptide-5 (DNSP-5), has been proposed to demonstrate biological activity relevant to neurodegenerative disease. We tested the in vitro effects of DNSP-5 in primary dopaminergic neurons dissected from the ventral mesencephalon of E14 Sprague Dawley rat fetuses. Cells were treated with several doses (0.03, 0.1, 1.0, 10.0 ng/mL) of GDNF, DNSP-5, or an equivalent volume of citrate buffer (vehicle). Morphological features of tyrosine hydroxylase positive neurons were quantified for each dose. DNSP-5 significantly increased (p < 0.001) all differentiation parameters compared to citrate vehicle (at one or more dose). For in vivo studies, a unilateral DNSP-5 treatment (30 µg) was administered directly to the SN. Microdialysis in the ipsilateral striatum was performed 28 days after treatment to determine extracellular levels of DA and its primary metabolites (3,4-dihydroxyphenylacetic acid and homovanillic acid). A single treatment significantly increased (~66%) extracellular DA levels compared to vehicle, while DA metabolites were unchanged. Finally, the protective effects of DNSP-5 against staurosporine-induced cytotoxicity were investigated in a neuronal cell line showing substantial protection by DNSP-5. Altogether, these studies strongly indicate biological activity of DNSP-5 and suggest that DNSP-5 has neurotrophic-like properties that may be relevant to the treatment of neurodegenerative diseases like PD.


Subject(s)
Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Neuropeptides/pharmacology , Oligopeptides/pharmacology , Animals , Benzimidazoles , Brain Chemistry/drug effects , Carbocyanines , Cell Differentiation/drug effects , Chromatography, High Pressure Liquid , Dopamine/metabolism , Dose-Response Relationship, Drug , Electrochemistry , Fluorescent Dyes , Glial Cell Line-Derived Neurotrophic Factor/chemistry , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Indicators and Reagents , Infusions, Intravenous , Membrane Potential, Mitochondrial/drug effects , Mesencephalon/cytology , Mesencephalon/drug effects , Microdialysis , PC12 Cells , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Staurosporine/antagonists & inhibitors , Staurosporine/toxicity
2.
Mol Psychiatry ; 18(10): 1096-105, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23032875

ABSTRACT

Cognitive impairments are common in depression and involve dysfunctional serotonin neurotransmission. The 5-HT1B receptor (5-HT(1B)R) regulates serotonin transmission, via presynaptic receptors, but can also affect transmitter release at heterosynaptic sites. This study aimed at investigating the roles of the 5-HT(1B)R, and its adapter protein p11, in emotional memory and object recognition memory processes by the use of p11 knockout (p11KO) mice, a genetic model for aspects of depression-related states. 5-HT(1B)R agonist treatment induced an impairing effect on emotional memory in wild type (WT) mice. In comparison, p11KO mice displayed reduced long-term emotional memory performance. Unexpectedly, 5-HT(1B)R agonist stimulation enhanced memory in p11KO mice, and this atypical switch was reversed after hippocampal adeno-associated virus mediated gene transfer of p11. Notably, 5-HT(1B)R stimulation increased glutamatergic neurotransmission in the hippocampus in p11KO mice, but not in WT mice, as measured by both pre- and postsynaptic criteria. Magnetic resonance spectroscopy demonstrated global hippocampal reductions of inhibitory GABA, which may contribute to the memory enhancement and potentiation of pre- and post-synaptic measures of glutamate transmission by a 5-HT(1B)R agonist in p11KO mice. It is concluded that the level of hippocampal p11 determines the directionality of 5-HT(1B)R action on emotional memory processing and modulates hippocampal functionality. These results emphasize the importance of using relevant disease models when evaluating the role of serotonin neurotransmission in cognitive deficits related to psychiatric disorders.


Subject(s)
Annexin A2/physiology , Avoidance Learning/physiology , Emotions/physiology , Hippocampus/physiology , Memory/physiology , Receptor, Serotonin, 5-HT1B/physiology , S100 Proteins/physiology , Animals , Annexin A2/deficiency , Annexin A2/genetics , Avoidance Learning/drug effects , Depression/physiopathology , Disease Models, Animal , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Female , Genes, Reporter , Glutamic Acid/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Magnetic Resonance, Biomolecular , Phosphorylation/drug effects , Presynaptic Terminals/metabolism , Protein Processing, Post-Translational/drug effects , Pyridines/pharmacology , Reaction Time , Receptors, AMPA/metabolism , Recombinant Fusion Proteins/metabolism , S100 Proteins/deficiency , S100 Proteins/genetics , Serotonin 5-HT1 Receptor Agonists/pharmacology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Transduction, Genetic
3.
J Pharmacol Exp Ther ; 324(2): 725-31, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18024788

ABSTRACT

l-Glutamate (Glu) is the main excitatory neurotransmitter in the mammalian central nervous system, and it is involved in most aspects of normal brain function, including cognition, memory and learning, plasticity, and motor movement. Although microdialysis techniques have been used to study Glu, the slow temporal resolution of the technique may be inadequate to properly examine tonic and phasic Glu. Thus, our laboratory has developed an enzyme-based microelectrode array (MEA) with fast response time and low detection limits for Glu. We have modified the MEA design to allow for reliable measures in the brain of awake, freely moving mice. In this study, we chronically implanted the MEA in prefrontal cortex (PFC) or striatum (Str) of awake, freely moving C57BL/6 mice. We successfully measured Glu levels 7 days postimplantation without loss of MEA sensitivity. In addition, we determined resting (tonic) Glu levels to be 3.3 microM in the PFC and 5.0 microM in the Str. Resting Glu levels were subjected to pharmacological manipulation with tetrodotoxin (TTX) and dl-threo-beta-hydroxyaspartate (THA). TTX significantly (p < 0.05) decreased resting Glu by 20%, whereas THA significantly (p < 0.05) increased resting Glu by 60%. Taken together, our data show that chronic recordings of tonic and phasic clearance of exogenously applied Glu can be carried out in awake mice for at least 7 days in vivo, allowing for longer term studies of Glu regulation.


Subject(s)
Corpus Striatum/metabolism , Glutamic Acid/analysis , Glutamic Acid/metabolism , Prefrontal Cortex/metabolism , Wakefulness/physiology , Animals , Corpus Striatum/chemistry , Male , Mice , Mice, Inbred C57BL , Microdialysis/methods , Prefrontal Cortex/chemistry , Research Design , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...