Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 12(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878355

ABSTRACT

Collecting duct carcinoma (CDC) is a rare renal cell carcinoma subtype with a very poor prognosis. There have been only a few studies on gene expression analysis in CDCs. We compared the gene expression profiles of two CDC cases with those of eight normal tissues of renal cell carcinoma patients. At a threshold of |log2fold-change| ≥ 1, 3349 genes were upregulated and 1947 genes were downregulated in CDCs compared to the normal samples. Pathway analysis of the deregulated genes revealed that cancer pathways and cell cycle pathways were most prominent in CDCs. The most upregulated gene was keratin 17, and the most downregulated gene was cubilin. Among the most downregulated genes were four solute carrier genes (SLC3A1, SLC9A3, SLC26A7, and SLC47A1). The strongest negative correlations between miRNAs and mRNAs were found between the downregulated miR-374b-5p and its upregulated target genes HIST1H3B, HK2, and SLC7A11 and between upregulated miR-26b-5p and its downregulated target genes PPARGC1A, ALDH6A1, and MARC2. An upregulation of HK2 and a downregulation of PPARGC1A, ALDH6A1, and MARC2 were observed at the protein level. Survival analysis of the cancer genome atlas (TCGA) dataset showed for the first time that low gene expression of MARC2, cubilin, and SLC47A1 and high gene expression of KRT17 are associated with poor overall survival in clear cell renal cell carcinoma patients. Altogether, we identified dysregulated protein-coding genes, potential miRNA-target interactions, and prognostic markers that could be associated with CDC.

2.
Nucleic Acids Res ; 46(19): 10448-10459, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30125002

ABSTRACT

Pentatricopeptide repeat (PPR) proteins are a large family of helical repeat proteins that bind RNA in mitochondria and chloroplasts. Sites of PPR action have been inferred primarily from genetic data, which have led to the view that most PPR proteins act at a very small number of sites in vivo. Here, we report new functions for three chloroplast PPR proteins that had already been studied in depth. Maize PPR5, previously shown to promote trnG splicing, is also required for rpl16 splicing. Maize PPR10, previously shown to bind the atpI-atpH and psaJ-rpl33 intercistronic regions, also stabilizes a 3'-end downstream from psaI. Arabidopsis PGR3, shown previously to bind upstream of petL, also binds the rpl14-rps8 intercistronic region where it stabilizes a 3'-end and stimulates rps8 translation. These functions of PGR3 are conserved in maize. The discovery of new functions for three proteins that were already among the best characterized members of the PPR family implies that functional repertoires of PPR proteins are more complex than have been appreciated. The diversity of sequences bound by PPR10 and PGR3 in vivo highlights challenges of predicting binding sites of native PPR proteins based on the amino acid code for nucleotide recognition by PPR motifs.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Chloroplast Proteins/genetics , Plant Proteins/genetics , RNA-Binding Proteins/genetics , Zea mays/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Base Sequence , Binding Sites/genetics , Chloroplast Proteins/metabolism , Gene Expression Regulation, Plant , Mutation , Plant Proteins/metabolism , Protein Binding , RNA Splicing , RNA-Binding Proteins/metabolism , Sequence Homology, Nucleic Acid , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...