Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 119(7): 3304-11, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25607221

ABSTRACT

Molecular glasses can grow crystals much faster at the free surface than in the interior. A property of this process is the creation of depressed grooves or depletion zones around the crystals on the initially flat amorphous surface. With scanning electron microscopy and atomic force microscopy, we studied this phenomenon in indomethacin, which crystallizes in two polymorphs (α and γ) of different morphologies. The observed depletion zones are well reproduced by the known coefficients of surface diffusion and the velocities of crystal growth. At the slow-growing flanks of needle-like α IMC crystals, depletion zones widen and deepen over time according to the expected kinetics for surface diffusion responding to a crystallization flux. Before fast-advancing growth fronts, depletion zones have less time to develop; their steady-state dimensions agree with the same model revised for a moving phase boundary. These results support the view that surface diffusion enables fast surface crystal growth on molecular glasses. Our finding helps understand crystal growth in thin films in which the formation of deep depletion zones can cause dewetting and alter growth kinetics.


Subject(s)
Glass/chemistry , Indomethacin/chemistry , Crystallization , Diffusion , Kinetics , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Phase Transition , Surface Properties
2.
J Phys Chem B ; 118(27): 7638-7646, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-24922278

ABSTRACT

Organic glasses can grow crystals much faster on the free surface than in the interior, a phenomenon important for fabricating stable amorphous materials. This surface process differs from and is faster than the glass-to-crystal (GC) growth mode existing in the bulk of molecular glasses. We report that similar to GC growth, surface crystal growth terminates if glasses are heated to gain fluidity. In their steady growth below the glass transition temperature Tg, surface crystals rise above the amorphous surface while spreading laterally and are surrounded by depressed grooves. Above Tg, the growth becomes slower, sometimes unstable. This damage is stronger on segregated needles (α indomethacin, nifedipine, and o-terphenyl) than on crystals growing in compact domains (γ indomethacin). This effect arises because the onset of liquid flow causes the wetting and embedding of upward-growing surface crystals. Segregated needles are at greater risk because their slow-growing flanks appear stationary relative to liquid flow at a low temperature. The disruption of surface crystal growth by fluidity supports the view that the process occurs by surface diffusion, not viscous flow. Compared to the bulk GC mode, surface crystal growth is disrupted less abruptly by fluidity. Nevertheless, to the extent that fluidity damages them, both processes are solid-state phenomena terminated in the liquid state.

3.
J Phys Chem B ; 117(35): 10334-41, 2013 Sep 05.
Article in English | MEDLINE | ID: mdl-23909486

ABSTRACT

Crystal growth in organic glasses has been studied in the presence of low-concentration polymers. Doping the organic glass nifedipine (NIF) with 1 wt % polymer has no measurable effect on the glass transition temperature Tg of host molecules, but substantially alters the rate of crystal growth, from a 10-fold reduction to a 30% increase at 12 °C below the host Tg. Among the polymers tested, all but polyethylene oxide (PEO) inhibit growth. The inhibitory effects greatly diminish in the liquid state (at Tg + 38 °C), but PEO persists to speed crystal growth. The crystal growth rate varies exponentially with polymer concentration, in analogy with the polymer effect on solvent mobility, though the effect on crystal growth can be much stronger. The ability to inhibit crystal growth is not well ordered by the strength of host-polymer hydrogen bonds, but correlates remarkably well with the neat polymer's Tg, suggesting that the mobility of polymer chains is an important factor in inhibiting crystal growth in organic glasses. The polymer dopants also affect crystal growth at the free surface of NIF glasses, but the effect is attenuated according to the power law us ∝ ub(0.35), where us and ub are the surface and bulk growth rates.


Subject(s)
Nifedipine/chemistry , Polymers/chemistry , Calorimetry, Differential Scanning , Crystallization , Glass/chemistry , Hydrogen Bonding , Phase Transition , Polyethylene Glycols/chemistry , Transition Temperature
4.
Mol Microbiol ; 84(5): 874-91, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22548341

ABSTRACT

Although bacterial cells are known to experience large forces from osmotic pressure differences and their local microenvironment, quantitative measurements of the mechanical properties of growing bacterial cells have been limited. We provide an experimental approach and theoretical framework for measuring the mechanical properties of live bacteria. We encapsulated bacteria in agarose with a user-defined stiffness, measured the growth rate of individual cells and fit data to a thin-shell mechanical model to extract the effective longitudinal Young's modulus of the cell envelope of Escherichia coli (50-150 MPa), Bacillus subtilis (100-200 MPa) and Pseudomonas aeruginosa (100-200 MPa). Our data provide estimates of cell wall stiffness similar to values obtained via the more labour-intensive technique of atomic force microscopy. To address physiological perturbations that produce changes in cellular mechanical properties, we tested the effect of A22-induced MreB depolymerization on the stiffness of E. coli. The effective longitudinal Young's modulus was not significantly affected by A22 treatment at short time scales, supporting a model in which the interactions between MreB and the cell wall persist on the same time scale as growth. Our technique therefore enables the rapid determination of how changes in genotype and biochemistry affect the mechanical properties of the bacterial envelope.


Subject(s)
Bacillus subtilis/physiology , Bacteriological Techniques/methods , Culture Media/chemistry , Elasticity , Escherichia coli/physiology , Hydrogels , Pseudomonas aeruginosa/physiology , Bacillus subtilis/growth & development , Biomechanical Phenomena , Escherichia coli/growth & development , Models, Theoretical , Pseudomonas aeruginosa/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...