Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834628

ABSTRACT

Structured surfaces, which are the basis of the lotus blossom effect, have great potential to serve/operate as functionalised surfaces, i.e., surfaces with specific and/or adjustable properties. In the present study, the aim is to use micro-structured elastomeric surfaces to specifically influence the friction and deformation behaviours on the basis of the shape and arrangement of the structures. Thiol-acrylate-based photopolymers patterned via nanoimprint lithography were investigated by using an in situ tribological measurement set-up. A clear influence of the different structures on the surface's friction behaviour could be shown, and, furthermore, this could be brought into relation with the real area of contact. This finding provides an important contribution to further development steps, namely, to give the structures switchable properties in order to enable the control of friction properties in a targeted manner.

2.
J Imaging ; 7(2)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-34460626

ABSTRACT

This paper proposes a new machine vision method to test the quality of a semi-transparent automotive illuminant component. Difference images of Frangi filtered surface images are used to enhance defect-like image structures. In order to distinguish allowed structures from defective structures, morphological features are extracted and used for a nearest-neighbor-based anomaly score. In this way, it could be demonstrated that a segmentation of occurring defects is possible on transparent illuminant parts. The method turned out to be fast and accurate and is therefore also suited for in-production testing.

3.
Polymers (Basel) ; 13(14)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34301080

ABSTRACT

Computational fluid dynamics (CFD) simulation is an important tool as it enables engineers to study different design options without a time-consuming experimental workload. However, the prediction accuracy of any CFD simulation depends upon the set boundary conditions and upon the applied rheological constitutive equation. In the present study the viscoelastic nature of an unfilled gum acrylonitrile butadiene rubber (NBR) is considered by applying the integral and time-dependent Kaye-Bernstein-Kearsley-Zapas (K-BKZ) rheological model. First, exhaustive testing is carried out in the linear viscoelastic (LVE) and non-LVE deformation range including small amplitude oscillatory shear (SAOS) as well as high pressure capillary rheometer (HPCR) tests. Next, three abrupt capillary dies and one tapered orifice die are modeled in Ansys POLYFLOW. The pressure prediction accuracy of the K-BKZ/Wagner model was found to be excellent and insensitive to the applied normal force in SAOS testing as well as to the relation of first and second normal stress differences, provided that damping parameters are fitted to steady-state rheological data. Moreover, the crucial importance of viscoelastic modeling is proven for rubber materials, as two generalized Newtonian fluid (GNF) flow models severely underestimate measured pressure data, especially in contraction flow-dominated geometries.

SELECTION OF CITATIONS
SEARCH DETAIL
...